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PREFACE

The following is the Eighth Annual Progress Replagntification of the Instream Flow
Requirements for Anadromous Fish in the Streamisizvihe Central Valley of California and
Fisheries Investigations, prepared as part of greti@l Valley Project Improvement Act
(CVPIA) Instream Flow and Fisheries Investigatioas effort which began in October, 2001.
Title 34, Section 3406(b)(1)(B) of the Central \&gllProject Improvement Act, P.L. 102-575,
requires the Secretary of the Department of theriloit to determine instream flow needs for
anadromous fish for all Central Valley Project ecoliéd streams and rivers, based on
recommendations of the U.S. Fish and Wildlife Ss\(iService) after consultation with the
California Department of Fish and Game (CDFG). pumoses of this investigation are: 1) to
provide scientific information to the Service’s @ Valley Project Improvement Act Program
to be used to develop such recommendations for&eralley streams and rivers; and 2) to
provide scientific information to other CVPIA pragns to use in assessing fisheries restoration
actions.

The field work described herein was conducted byBEhard, Mark Gard, Bill Pelle, Kevin
Aceituno, Jeremy Redding, Rick Williams, Jacob GyrBrenda Olson, Tricia Bratcher, Robert
Hughes, Steve Thomas and Josh Gruber.

Written comments or questions can be submitted to:

Mark Gard, Senior Biologist
Energy Planning and Instream Flow Branch
U.S. Fish and Wildlife Service
Sacramento Fish and Wildlife Office
2800 Cottage Way, Room W-2605
Sacramento, California 95825

Mark_Gard@fws.gov

! The scope of this program was broadened in FY 2008clude fisheries
investigations. This program is a continuatioraaf-year effort, titled the Central Valley Project
Improvement Act Instream Flow Investigations, whiah from February 1995 through
September 2001.
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INTRODUCTION

In response to substantial declines in anadromehbgbpulations, the Central Valley Project
Improvement Act provided for enactment of all resgae efforts to double sustainable natural
production of anadromous fish stocks includingfthe races of Chinook salmon (fall, late-fall,
winter, and spring), steelhead trout, white ane&gr&turgeon, American shad and striped bass.
In June 2001, the Service’s Sacramento Fish andIWgilOffice, Energy Planning and Instream
Flow Branch prepared a study proposal to use thacess Instream Flow Incremental
Methodology (IFIM) to identify the instream flowqairements for anadromous fish in selected
streams within the Central Valley of Californiahéproposal included completing instream
flow studies on the Sacramento and Lower Americae® and Butte Creek which had begun
under the previous 7-year effort, and conductirsgre@am flow studies on other rivers, with the
Yuba River selected as the next river for studielse last report for the Lower American River
study was completed in February 2003, the finabrefor the Butte Creek study was completed
in September 2003, and the last two reports foStx@amento River were completed in
December 2006. In 2004, Clear Creek was selestesh additional river for studies. In 2007,
the Tuolumne River was selected for a minor prajecjuantify floodplain inundation area as a
function of flow. In 2008, South Cow Creek wases#td as an additional river for studies. In
2009, the following fisheries investigation tasksrevselected for study: 1) Re-examine Clear
Creek data on adult Spring Chinook — is the ina@easVeighted Useable Area due to an
increase in quality or is it an increase in arga[2ar Creek Biovalidation — how well does
IFIM compare to field observations; 3) SacramentceRtributaries flow and temperature
monitoring; 4) Stanislaus River floodplain areasees flow; and 5) Red Bluff Diversion Dam
Interim Pumping Plant screen hydraulic evaluation.

The Yuba River study was planned to be a 4-yeartefhbeginning in September 2001. The
goals of the study are to determine the relatignbbiween stream flow and physical habitat
availability for all life stages of Chinook salmdfall- and spring-runs) and steelhead/rainbow
trout and to determine the relationship betweesastiflow and redd dewatering and juvenile
stranding. Collection of spawning and juvenilermgg criteria data for fall- and spring-run
Chinook salmon and steelhead/rainbow trout was tetegh by, April 2004 and September 2005,
respectively. Field work to determine the relasioip between habitat availability for spawning
and juvenile rearing and streamflow for spring-aumd fall-run Chinook salmon and
steelhead/rainbow trout was completed in, FY 2Q@bRY 2007, respectively. A draft
spawning report was completed in FY 2007 and deafting and redd dewatering/juvenile
stranding reports were completed in FY 2008. InZ008, we completed the response-to-
comments document for the peer review of the spagvsiiudy report and revisions to the draft
spawning study report stemming from the peer revawl conducted a series of stakeholder
meetings to discuss stakeholder comnfer@igarding the draft spawning report. In FY 2006,
completed a sensitivity analysis to further resptmndoncerns raised at those meetings,
completed a response-to-comments document fotakelsolder review of the spawning study
report and revisions to the draft spawning repi@rtnsning from the stakeholder review, and

2 Stakeholder review for the Yuba reports was aggsh during scoping meetings

prior to commencement of the studies.
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conducted a stakeholder review and started a pgmw of the juvenile rearing and redd
dewatering/juvenile stranding reports. The renmgiwork on the Yuba reports is ongoing and
will be completed in FY 2010.

The Clear Creek study was planned to be a 5-yéant dbeginning in October 2003. The goals
of the study are to determine the relationship betwstream flow and physical habitat
availability for all life stages of Chinook salmgfall- and spring-run) and steelhead/rainbow
trout. There are four phases to this study basdti®life stages to be studied and the number of
segments delineated for Clear Creek from downstr@ahihiskeytown Reservoir to the
confluence with the Sacramento RitefThe four phases are: 1) spawning in the upper t
segments; 2) fry and juvenile rearing in the ugper segments; 3) spawning in the lower
segment; and 4) fry and juvenile rearing in thedogegment. Field work for the above four
phases was completed in, FY 2005, FY 2007, FY 2Z0@BFY 2009, respectively. In FY 2007
the final report and the peer review response-taroents document for spawning in the upper
two segments was completed. A draft report orfitteespawning sites in the lower segment was
completed in FY 2009 and sent off for stakehol@éstaw. We are currently making
arrangements for peer review of that report. InZ009, we completed construction of the 2D
hydraulic models for four of the five lower segmesdrring sites. We are currently awaiting

flow data from Graham Matthew and Associates cdimgufirm needed to calibrate and conduct
the production runs for those models. We are stilovaiting to receive additional bed
topography data on study site 3B in the lower sedrftem Graham Matthews and Associates.
The remaining work on the Clear Creek reports belicompleted in FY 2010.

The South Cow Creek study was planned to be a befemat and began in October 2008 with
habitat mapping and collection of spawning halstatability data for fall-run Chinook salmon.
Fieldwork was completed on one site and startednoadditional three sites to determine the
relationship between stream flow and physical lslavailability for fry and juvenile rearing
fall-run Chinook salmon in FY 2009. Due to fundiagts, the South Cow Creek study will be
completed in FY 2010 with completion of fieldwork the three juvenile sites, redd mapping,
and preparation of a final report on habitat qugretnd quality in South Cow Creek.

For the fisheries investigations tasks, the task-eRRamine Clear Creek data on adult Spring
Chinook — is the increase in Weighted Useable Areato an increase in quality or is it an
increase in area” was completed in FY 2009, asfigltbvork for the task “Clear Creek
Biovalidation — how well does IFIM compare to fieddservations.” The latter task will be
completed in FY 2010. We began fieldwork for tleei@mento River tributaries flow and
temperature monitoring task in FY 2009; due to latkunding, this task will be continued by
the Anadromous Fish Restoration Program HabitatdRa&son Coordinators in FY 2010. We
were unable to conduct the Stanislaus River floaidphrea versus flow task because a U.S.

% There are three segments: the upper alluviahseg the canyon segment, and the
lower alluvial segment. Spring-run Chinook salnspawn in the upper two segments, while
fall-run Chinook salmon spawn in the lower segnsent steelhead/rainbow trout spawn in all

three segments.
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Bureau of Reclamation hydraulic model of the Stanis River, that would have been used to
conduct this task, was not completed in FY 2008is Task will not be conducted in FY 2010
due to lack of funding. In collaboration with t8®FG and the National Marine Fisheries
Service, we conducted an initial hydraulic evaloatf the Red Bluff Interim Pumping Plant
screens on June 1-12, 2009, and plan to condwdditional three hydraulic evaluations in FY
2010 at a range of Sacramento River flows and pogieivels.

The following sections summarize project activifiedween October 2008 and September 2009.
YUBA RIVER

Habitat Simulation
Chinook salmon and steelhead/rainbow trout spawning

A draft report and response to peer review commamtsment was completed in FY 2007. In
FY 2007, we sent out the draft report to interegidies for review and comment prior to
finalizing the report. This review by interesteatfes was in response to commitments made by
the Service during the initial planning meetingshvihose interested parties. This is the first of
the CVPIA instream flow reports to be reviewedhistmanner. In FY 2008 and 2009, we
conducted a series of meetings with stakeholdg@déeng the draft report. In response to
comments received at these meetings, we completed 2009 a habitat modeling and
biological verification sensitivity analysis to agds these comments. The sensitivity analysis
included different methods for developing critgdansity-based criteria), different methods of
calculating habitat (geometric mean), and alteveatriteria (specifically steelhead/rainbow
trout spawning criteria that we developed on C@aek). In FY 2009, we completed a
response-to-comments document for the stakehadg@w of the spawning study report and
revisions to the draft spawning report stemmingnftbe stakeholder review. With a second
peer review upcoming, a final report on flow-habreationships for spawning and the
response-to-comments document will be completd€yir2010.

Juvenile Chinook salmon and steelhead/rainbow trout rearing

Computation of spring/fall-run Chinook salmon ateethead/rainbow trout fry and juvenile
rearing habitat over a range of discharges in waspteted for all juvenile rearing sites in FY
2008. The draft report was completed in FY 2008. We #aistdraft report out for concurrent
stakeholder and peer review in FY 2009. Peer veuiesponse-to-comments document and a
final report on flow-habitat relationships for resy will be completed by September 2010.

Chinook salmon and steelhead/rainbow trout juvenile stranding and redd dewatering

A draft report was completed in FY 2008. We sérd traft report out for concurrent
stakeholder and peer review in FY 2009. We withptete the final report in FY 2010.
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CLEAR CREEK

Hydraulic and Structural Data Collection

Juvenilefall-run Chinook salmon and steelhead/rainbow trout rearing (Lower Alluvial

Segment)

During FY 2008, we completed all the data collecfior the Side Channel Run/Pool, North
State Riffle, and 3B sites. In FY 2009, we comgidiethe remaining bed topography data
collection in the Tarzan Pool site, tied together ¥ertical benchmarks and collected the 50
validation velocity data points for that site. \en collected the bed topography data, tied
together the vertical benchmarks and collectedbhealidation velocity data points for ACID
Glide site. We also collected medium and high fleater surface elevations for all five lower
rearing sites. Data collection for the five studgswas completed by April 2009. We are still
awaiting some additional bed topography data fer3B study site from Graham Matthews and
Associates.

Hydraulic M odel Construction and Calibration
Fall-run Chinook salmon and steelhead/rainbow trout spawning (Lower Alluvial Segment)

All data have been compiled and checked, and hilidnawodel construction and calibration was
completed on all five study sites in FY 2008. Véenpleted the productions runs for all five
study sites in early FY 2009.

Fall-run Chinook salmon and steelhead/rainbow trout rearing (Lower Alluvial Segment)

All data collected in FY 2008 for the four studyesi has been entered into spreadsheets. We
completed hydraulic model construction for foutlué five study sites (with the exception of
3B) in FY 2009. The hydraulic model constructfonsite 3B has been postponed until FY
2010, while we wait for additional bed topograplagadfrom Graham Matthews and Associates.
We plan on conducting the calibration and produrctims for the five study sites in FY 2010
after we receive needed flow data from Graham Matthand Associates.

Habitat Suitability Criteria (HSC) Development

Juvenile spring-run Chinook salmon and steelhead/rainbow trout rearing (Upper Alluvial and
Canyon Segments)

Staff of the Red Bluff Fish and Wildlife Office haween conducting snorkeling surveys
specifically to collect rearing HSC for juvenilersp-run Chinook salmon and
steelhead/rainbow trout in the Upper Alluvial anah@on segments. The collection of Young of
Year (YOY) spring-run Chinook salmon and steelhesadibow trout (fry and juveniles) rearing
HSC data began at the end of FY 2004 with survegslucted on the dates in Table 1. Snorkel
USFWS, SFWO, Energy Planning and Instream Flow &ran 6

FY 2009 Annual Report
January 19, 2010



surveys were conducted along the banks and in itiélenof the channel. Depth, velocity,
adjacent velocityand cover data were also collected on locatioristwivere not occupied by
YOY spring-run Chinook salmon and steelhead/rainbowt (unoccupied locations). This was
done so that we could apply a method presentediay @t al. (2000) to explicitly take into
account habitat availability in developing HSC eriid, without using preference ratios (use
divided by availability). Traditionally, criteriare created from observations of fish use by
fitting a nonlinear function to the frequency obitat use for each variable (depth, velocity,
cover, adjacent velocity). One concern with teishinique is what effect the availability of
habitat has on the observed frequency of habitat &®r example, if cover is relatively rare in a
stream, fish will be found primarily not using comply because of the rarity of cover, rather
than because they are selecting areas without céveay et al. (2000) proposed a modification
of the above technique where habitat suitabilitieda data are collected both in locations where
fish are present and in locations where fish aseab Criteria are then developed by using a
logistic regression with presence or absence bfdssthe dependent variable and depth, velocity,
cover and adjacent velocity as the independenabkes, and all of the data (in both occupied
and unoccupied locations) are used in the regnessio

Before going out into the field, a data book waspaired with one line for each unoccupied
location where depth, velocity, cover and adjasetacity would be measured. Each line had a
distance from the bank, with a range of 0.5 toel by 0.5 foot increments, with the values
produced by a random number generator. In areasdld be sampled up to 20 feet from the
bank, the above distances were doubled.

When conducting snorkel surveys adjacent to thé&,bame person snorkeled upstream along the
bank and placed a weighted, numbered tag at eaatida where YOY spring-run Chinook
salmon or steelhead/rainbow trout were observdte shorkeler recorded the tag number, the
species, the cover cotend the number of individuals observed in eacl2@®m size class on

a Poly Vinyl Chloride (PVC) wrist cuff. If one pgon was snorkeling per habitat unit, the side
of the creek to be snorkeled would alternate wébthehabitat unit and would also include

* The adjacent velocity was measured within 2 feegither side of the location where
the velocity was the highest. Two feet was setebsed on a mechanism of turbulent mixing
transporting invertebrate drift from fast-wateraseo adjacent slow-water areas where fry and
juvenile salmon and steelhead/rainbow trout regadeng into account that the size of turbulent
eddies is approximately one-half of the mean rdegth (Terry Waddle, USGS, personal
communication), and assuming that the mean depffeair Creek is around 4 feet (i.e., 4 feet x
% = 2 feet). This measurement was taken to pravid®ption of using an alternative habitat
model which considers adjacent velocities in assgdsbitat quality. Adjacent velocity can be
an important habitat variable as fish, particuldrjyand juveniles, frequently reside in slow-
water habitats adjacent to faster water where tebeate drift is conveyed. Both the residence
and adjacent velocity variables are important ifgl fo minimize the energy expenditure/food
intake ratio and maintain growth.

> If there was no cover elements (as defined in&aphithin 1 foot horizontally of the

fish location, the cover code was 0.1 (no cover).
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Table 1

Spring-run Chinook Salmon and Steelhead/Rainbowftldavenile HSC Data Collection

Dates

Average | go® Flows (cfs)

September 24, 2004
January 14, 21, and 26-27, 2005
February 15, 2005
April 6 and 20, 2005
May 5, 11-13, 16, 23 and 26, 2005
June 7, 10, 13 and 23-24, 2005
July 28-29, 2005
November 22, 2005
December 7-8 and 14-16, 2005
January 25-26, 2006
February 10, 17 and 23, 2006
March 9-10, 15-17, 20-21, 27 and 29, 2006
April 6, 20-21, 24 and 26, 2006
May 1, 5-6, 9-10, 16-17, 24-25 and 30-31, 2006
June 6-7, 2006
July 5 and 14, 2006
August 8, 2006
December 7, 15, 18-20 and 29, 2006
January 5, 8, 10, 17-19, 25-26 and 30-31, 2007
February 1, 5-7, 13-15, 21 and 27, 2007
March 7, 2007
April 3, 5, 10, 13, 17 and 26-27, 2007
May 1, 11, 15-18 and 23-24, 2007
June 7, 19 and 21, 2007
July 10, 12 and 19-20, 2007
January 16-17 and 30, 2008
April 29-30, 2008

213
283
238
250
264
198
154
199
216
194
272
378
333
262
136
95
89
240
217
261
255
235
227
167
106
253
224

® U.S. Geological Survey Gage Number 11372000 oarGleeek near Igo, CA.
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Table 2
Cover Coding System

Cover Category Cover Code
No cover 0
Cobble 1
Boulder 2
Fine woody vegetation (< 1" diameter) 3
Fine woody vegetation + overhead 3.7
Branches 4
Branches + overhead 4.7
Log (> 1' diameter) 5
Log + overhead 5.7
Overhead cover (> 2' above substrate) 7
Undercut bank 8
Aquatic vegetation 9
Aquatic vegetation + overhead 9.7
Rip-rap 10

snorkeling the middle portion of some units. Asaample, the right bank was snorkeled for
one habitat unit, the middle of the next habitat was then snorkeled, and then the left bank
was snorkeled of the next habitat unit and therptbeess was repeatédlhe habitat units were
snorkeled working upstream, which is generallydtesdard for snorkel surveys. In some cases
when snorkeling the middle of a habitat unit, tiféalilty of snorkeling mid-channel required
snorkeling downstream. If three people were gaingnorkel each unit, one person snorkeled
along each bank working upstream, while the thespn snorkeled downstream through the
middle of the unit. The distance to be snorkeled delineated by laying out a tape along the
bank as described previously for a distance offéB0or 300 feet. The average and maximum
distance from the water’s edge that was samplagraailability in the area sampled
(percentage of the area with different cover types) the length of bank sampled (measured

"The Sacramento Fish and Wildlife Office InstreamwIGroup designates left and right

bank looking upstream.
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with a 150 or 300-foot-long tape) was also recordéthen three people were snorkeling, cover
percentages were collected by each person snagkefifter completing each unit, the
percentages for each person were combined andgeeerd he cover coding system used is
shown in Table 2.

A 150 or 300-foot-long tape was put out with ond ahthe location where the snorkeler
finished and the other end where the snorkelerrbegaree people went up the tape, one with a
stadia rod and data book and the other two witlading rod and velocity meter. At every 20-
foot interval along the tape, the person with tlaglig rod measured out the distance from the
bank given in the data book. If there was a tagiwi3 feet of the location, “tag within 3” was
recorded on that line in the data book and the lpgmpceeded to the next 20-foot mark on the
tape, using the distance from the bank on the livext If the location was beyond the sampling
distance, based on the information recorded bgtioekeler, “beyond sampling distance” was
recorded on that line and the recorder went tonthe line at that same location, repeating until
reaching a line with a distance from the bank witiie sampling distance. If there was no tag
within 3 feet of that location, one of the peopligwthe wading rod measured the depth,
velocity, adjacent velocity and cover at that lomat Depth was recorded to the nearest 0.1 foot
and average water column velocity and adjacentcitglavere recorded to the nearest 0.01 ft/s.
Another individual retrieved the tags, measuredddyath and mean water column velocity at the
tag location, measured the adjacent velocity ferltication, and recorded the data for each tag
number. Data taken by the snorkeler and the measuare correlated at each tag location. For
the one-snorkeler surveys, the unoccupied datdnémid-channel snorkel surveys was
collected by establishing the distance to be sredkiey laying out the tape on a bank next to the
distance of creek that was to be snorkeled. Aiterkeling that distance, the line snorkeled was
followed down through the middle of the channel #merandomly selected distance at which
the unoccupied data was to be collected was mahsutg¢oward the left or right bank,
alternating with each 20 foot location along theeta For the three-snorkeler surveys,
unoccupied data was collected for each habitatsimutkeled in this manner by alternating left
and right bank or mid-channel for each habitat andrkeled. As an example, for the first
habitat unit snorkeled, unoccupied data would Becied along the left bank. At the next unit,
data would be collected along the right bank. h&tmext unit, the data would be collected as
described previously using the mid-channel linekeled. No HSC snorkel surveys were
conducted in FY 20009.

Results

To date, there have been 214 observations of YOMgpun Chinook salmon, and 566
observations of YOY steelhead/rainbow trout (irs tteise the use of the term observations
indicates when a sighting of one or more fish o). An observation can include
observations of fry (<60 mm in length) and obseaorat of juveniles (60 mm). Of the 214

YOY spring-run Chinook salmon observations, thexeehbeen 193 spring-run Chinook salmon
observations of <60 mm fish and 34 spring-run Gbknsalmon observations of6& mm fish.
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Of the 566 YOY steelhead/rainbow trout observatidimsre have been 279 steelhead/rainbow
trout observations of <60 mm fish and 314 stealframbow trout observations of66 mm
fish.

A total of 1,175 mesohabitat units have been swddy date. A total of 156,741 feet of near-
bank habitat and 33,524 feet of mid-channel habéae been sampled to date. Table 3
summarizes the number of feet of different mesdhabipes sampled to date and Table 4
summarizes the number of feet of different covpesysampled to date. We have developed two
different groups of cover codes based on snorkekys we conducted on the Sacramento River:
Cover Group 1 (cover codes 4 and 7 and composisér§iam-+overhead] cover), and Cover
Group 0 (all other cover codes). A total of 98,4dét of Cover Group 0 and 56,029 feet of
Cover Group 1 in near-bank habitat, and 32,509de€over Group 0 and 750 feet of Cover
Group 1 in mid-channel habitat, have been sampleihte.

Due to the need to complete all of the Clear Cregbrts in FY10, no further YOY and juvenile
spring-run Chinook salmon and steelhead/rainbowut tHSC data will be collected.

Habitat Simulation

Juvenile spring-run Chinook salmon and steelhead/rainbow trout rearing (Upper Alluvial and
Canyon Segments)

Spring-run Chinook salmon and steelhead/rainbowt trearing habitat will be computed over a
range of discharges for the six spawning sitessandearing sites in the Upper Alluvial and
Canyon segments. Completion of this phase ofttiayswill occur in FY 2010, due to the lack
of funds for further snorkeling surveys to colladditional HSC data. Given the small number
of observations of juvenile spring-run Chinook samgathered to date, it may be necessary to
utilize the Clear Creek fall-run Chinook salmonguile criteria to be developed, spring-run
Chinook salmon juvenile rearing HSC data from aaotiteek or river with characteristics
similar to Clear Creek, or conduct transferabitégts using Clear Creek fall-run HSC or spring-
run rearing HSC from another creek or river. Theftdreport was partially completed in FY
2009. We will complete draft and final reportstbe 2-D modeling of the spring-run Chinook
salmon and steelhead/rainbow trout rearing in thpdd Alluvial and Canyon segments in FY
2010. The Red Bluff Fish and Wildlife Office haxjuested that a draft report be distributed to
interested parties for comment in addition to pegrew, as is being done with the Yuba River
Study reports.

Fall-run Chinook salmon and steelhead/rainbow trout spawning (Lower Alluvial Segment)

We completed the hydraulic model production runsafbfive study sites over the range of
simulation discharges, computed fall-run Chinodknem and steelhead/rainbow trout spawning
habitat over a range of discharges for the fivevgiiag sites and completed a draft report in FY
2009. A peer review and final report will be coeted in FY 2010.
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Table 3
Distances Sampled for YOY Spring-run Chinook Sairaad
Steelhead/Rainbow Trout HSC Data - Mesohabitat $ype

Mesohabitat Type  Near-bank habitat distance sampled (ft) Mid-channel habitat distance sampled (ft)

Main Channel Glide 4,071 744
Main Channel Pool 66,804 12,993
Main Channel Riffle 31,292 7,011
Main Channel Run 52,065 10,395
Side Channel Glide 0 550
Side Channel Pool 1,180 520
Side Channel Riffle 200 365
Side Channel Run 0 664
Cascade 1,129 282
Table 4
Distances Sampled for YOY Spring-run Chinook Salrand
Steelhead/Rainbow Trout HSC Data - Cover Types
Cover Type Near -bank habitat distance sampled (ft) Mid-channel habitat distance sampled (ft)
None 48,623 18,372
Cobble 14,901 8,763
Boulder 7,835 4,558
Fine Woody 48,153 465
Branches 23,518 376
Log 1,700 38
Overhead 1,461 26
Undercut 3,049 73
Aquatic Vegetation 5,115 616
Rip Rap 0 0
Overhead + instream 45,101 611
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Fall-run Chinook salmon and steelhead/rainbow trout rearing (Lower Alluvial Segment)

We will complete the hydraulic model production suor all five study sites over the range of
simulation discharges, compute fall-run Chinookrsai and steelhead/rainbow trout rearing
habitat over a range of discharges for the fivensiiag sites and five rearing sites and issue draft
and final reports in FY 2010.

SOUTH COW CREEK
Habitat Mapping
Juvenilefall-run Chinook salmon rearing

Mesohabitat mapping of South Cow Creek was condudtgober 27-30, 2008, November 24-
26, 2008, and April 16, 2009. There were thregipios of the creek that were mesohabitat
typed. These three sections were the Boero R&atley Floor Reach, and the Tetrick Reach.
The combined distance for these three reaches Bésniles. Using habitat typing protocols
developed by CDFG, the mesohabitat mapping consigtevalking upstream or downstream
and delineating the mesohabitat units. The lonaticthe upstream and downstream boundaries
of habitat units was recorded with a Real Time Kaaéic (RTK) Global Positioning System
(GPS) unit. The mesohabitat units were also dateteon aerial photos.

Following the completion of the mesohabitat mapmndpril 16, 2009, the mesohabitat types
and number of habitat units of each habitat typesich segment were enumerated, and
shapefiles of the mesohabitat units were createdGeographic Information System (GIS) using
the GPS data and aerial photos flown on OctobeP@G8. Since we were not able to get
permission for access to the upper 1.54 mileseMalley Floor Reach, identification of habitat
types and shapefiles for this area was made sos#hg the October 27, 2008 aerial photos. The
area of each mesohabitat unit was computed in BI8 the above shapefiles. A total of 444
mesohabitat units were mapped for the three reachasle 5 summarizes the mesohabitat types,
area totals and numbers of each type recordedgltirenhabitat mapping process.

During the course of conducting the mesohabitatpimap we also attempted to collect fall-run
Chinook salmon spawning HSC. We were only abledate a total of 20 redds, which were
insufficient data for use in developing spawningddS

Field Reconnaissance and Study Site Selection
Juvenilefall-run Chinook salmon rearing

Field reconnaissance in April and May 2009 invedgd potential study sites in the Boero and
Valley Floor reaches. Based on the results ofitesohabitat mapping and field reconnaissance,
a list of potential study sites was developed.ngshe final list of potential study sites, we
selected five habitat study sites that will reprégbe habitat types found in the Boero and
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Table 5
FY 2009 South Cow Creek Mesohabitat Mapping Results

Mesohabitat Type South Cow Creek Units Number of Units
Area Totals (ft%)
Side Channel Pool 51,292 32
Main Channel Pool 697,366 94
Side Channel Riffle 19,584 40
Main Channel Riffle 261,901 124
Side Channel Run 15,277 13
Main Channel Run 234,679 100
Side Channel Glide 1,156 2
Main Channel Glide 138,234 37
Cascade 493 2

Valley Floor reaches. We randomly selected thethaistudy sites to insure unbiased selection
of the study sites. The following is the finak laf the five study sites, listed in order from
upstream to downstream: Jones, Poole, Farrelar®afich and Boero.

Transect Placement (study site setup)
Juvenilefall-run Chinook salmon rearing

The Poole, Jones, Sabanovich, and Farrell study siere established in April 2009, while the
Boero study site was established in May 2009. tRkesites selected for modeling, the
landowners along both riverbanks were identified tamporary entry permits were sent,
accompanied by a cover letter, to acquire permisi&inentry onto their property during the
course of the study.

For each study site, a transect was placed atghand downstream ends of the site. The
downstream transect will be modeled with the Plajditabitat Simulation System (PHABSIM)

to provide water surface elevations as an inptheéd-D model. The upstream transect will be
used in calibrating the 2-D model. The initial bedghnesses used by River2D are based on the
observed substrate sizes and cover types. A rheitip applied to the resulting bed

roughnesses, with the value of the multiplier ajdso that the WSEL generated by River2D at
the upstream end of the site match the WSEL predlicy the PHABSIM transect at the

upstream end of the site. Transect pins (headpiddailpins) were marked on each river bank
above the 300 cfs water surface level using rebaeml into the ground and/or bolts placed in

tree trunks. Survey flagging was used to marKdhations of each pin. We also installed
USFWS, SFWO, Energy Planning and Instream Flow &ran 14
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horizontal bench marks that act as control pointgHe bed topography data collection when
using a robotic total station. After installingethorizontal bench marks, data was collected to
establish a precise set of location coordinategdah horizontal bench mark using survey-grade
RTK GPS. Vertical benchmarks (lagbolts in treebexirock points) were established, and
marked with paint and flagging.

Hydraulic and Structural Data Collection
Juvenilefall-run Chinook salmon rearing

Hydraulic and structural data collection for theeBm study site was completed in FY 2009.

Low and medium flow water surface elevations weléected for all five sites. Velocity sets
were collected for the transects at the Boero, &danes, and Farrell sites. Depth and velocity
measurements were made by wading with a wadinggogpped with a Marsh-McBirn8y

model 2000 or a Price AA velocity meter. A tapeswaed to measure stations along the
transects. Substrate and cover (Tables 6 ana @y ahe transects were determined visually.
Dry bed elevations and substrate and cover datgahe transects were collected and the
vertical benchmarks were tied together for the BpPoole and Jones sites. Due to lack of
sufficient funds and time constraints, we were Um&d collect data on the Sabanovich study site
and eliminated it from the study.

We collected the data between the inflow and owtti@nsects by obtaining the bed elevation
and horizontal location of individual points withatal station or survey-grade RTK GPS, while
the cover and substrate was visually assessedapemt. Bed topography data collection was
completed for the Boero study site and a majoritthe data was collected for the Poole, Jones,
and Farrell sites. Stage of zero flow at the outftransect was surveyed in for the Boero, Poole,
and Jones sites. We anticipate collecting higi fieater surface elevations during the winter of
2009-2010 on the four study sites. We will alsmptete the bed topography data collection on
the Poole, Jones, and Farrell study sites in FY0201

To validate the velocities predicted by the 2-D miloaglithin the Boero, Poole, and Jones study
sites, depth, velocities, substrate and cover nmeamnts were collected in the site by wading
with a wading rod equipped with a Marsh-McBirneydab2000 velocity meter. The horizontal
locations and bed elevations were determined bpdak total station shot on a prism held at
each point where depth and velocity were measurethése sites. A total of 50 representative
points were measured throughout each site. Weipaté completing the hydraulic and
structural data collection for the four rearingesitn FY 2010.
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Table 6
Substrate Descriptors and Codes

Code Type Particle Size (inches)
0.1 Sand/Silt <0.1
1 Small Gravel 01-1
1.2 Medium Gravel 1-2
1.3 Medium/Large Gravel 1-3
2.3 Large Gravel 2-3
2.4 Gravel/Cobble 2-4
3.4 Small Cobble 3-4
3.5 Small Cobble 3-5
4.6 Medium Cobble 4-6
6.8 Large Cobble 6-8
8 Large Cobble 8-10
9 Boulder/Bedrock > 12
10 Large Cobble 10-12

Hydraulic Model Construction and Calibration
Juvenilefall-run Chinook rearing

The topographic data for the 2-D model (contaimeddd files) is first processed using the
R2D_Bed software, where breaklines are added tusea smooth bed topography. The
resulting data set is then converted into a contjmnal mesh using the R2D_Mesh software,
with mesh elements sized to reduce the error ingb@gations resulting from the mesh-
generating process to 0.1 foot where possible ngilre computational constraints on the number
of nodes. The resulting mesh is used in River2Birtaulate depths and velocities at the flows to
be simulated.

The PHABSIM transect at the outflow end of each stcalibrated to provide the WSEL at the
outflow end of the site used by River2D. The PHAB$ransect at the inflow end of the site is
calibrated to provide the water surface elevatigse to calibrate the River2D model. The
initial bed roughnesses used by River2D are base¢teobserved substrate sizes and cover
types. A multiplier is applied to the resultingdb®ughnesses, with the value of the multiplier
USFWS, SFWO, Energy Planning and Instream Flow &ran 16
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adjusted so that the WSEL generated by River2Deairtflow end of the site match the WSEL
predicted by the PHABSIM transect at the inflow efidhe sit&. The River2D model is run at
the flows at which the validation data set wasem#d, with the output used to determine the
difference between simulated and measured velscidiepths, bed elevations, substrate and
cover. The River2D model is also run at the sitafaflows to use in computing habitat.

All data for the four fall-run Chinook salmon reagisites have been compiled and checked.
PHABSIM calibration has been completed for twoss{i®oero and Poole sites). Construction
and calibration of the 2-D hydraulic model has beampleted for the Boero site. Construction
and calibration of the 2-D hydraulic models as désd above for the three other study sites and
running the production runs for the simulation fiofer all four sites will be completed in FY
2010.

Habitat Suitability Criteria Development
Juvenilefall-run Chinook salmon rearing

We will be using habitat suitability criteria degpked for the Lower Alluvial Segment of Clear
Creek for fall-run fry and juvenile Chinook salmaearing.

Habitat Simulation
Juvenilefall-run Chinook salmon rearing

Using the fall-run Chinook salmon fry and juveniaring HSC developed for the Lower
Alluvial Segment of Clear Creek, fall-run Chinoadraon fry and juvenile rearing habitat will

be computed over a range of discharges for ther&aring sites in South Cow Creek.
Completion of this phase of the study will occuiFivi 2010. We anticipate completing draft and
final reports on the 2-D modeling of the fall-ruhi@ook salmon juvenile rearing in South Cow
Creek in FY 2010.

FISHERIESINVESTIGATIONS

Re-examine Clear Creek data on Adult Spring Chinook
Methods

The purpose of this task was to determine if tleegase in Weighted Useable Area (WUA) was
due to an increase in habitat quality or due tonarease in area. To accomplish this task, we
needed to compute, over a range of flows, the atmfiarea of spring-run Chinook salmon
spawning habitat, to compare it to the amount of AMftdm U.S. Fish and Wildlife Service
(2007). The amount of area of habitat can be caedon River2D by using binary criteria,

® This is the primary technique used to calibrateRher2D model.
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which have a suitability of 1 for habitat and zésonon-habitat. We developed the binary
criteria based on the continuous criteria in UiShfnd Wildlife Service (2007) by defining
habitat as depths, velocities or substrate categdhiat had a continuous suitability greater than
0.2 in U.S. Fish and Wildlife Service (2007). Ttieary criteria were used with the final
Computational Mesh file (cdg) production files ahd substrate file for each site to compute the
area of spring-run Chinook salmon spawning habwat the desired range of simulation flows
for all sites. The area values for the sites rhesegment were added together and multiplied by
the ratio of total redds counted in the segmemiutober of redds in the modeling sites for that
segment to produce the total area per segment.sgrmg-run Chinook salmon multipliers were
calculated using redd counts from 2000-2005.

Results

The binary criteria that were used to compute tkea af spring-run Chinook salmon spawning
habitat are given in Table 7, while the comparigbarea of spring-run Chinook salmon
spawning habitat to the amount of WUA from U.S hFasid Wildlife Service (2007) is shown in
Figures 1 and 2.

Discussion

For the upper alluvial segment, which containsvidi® majority of the spring-run Chinook
salmon spawning habitat, as compared to the casggment, the increase in WUA was due to
an increase in area up to a flow of approximatély &fs, while the increase in WUA going from
400 to 900 cfs was due to an increase in quasyecifically, the amount of area of spring-run
Chinook salmon spawning habitat changed in the saamer as the amount of WUA from
U.S. Fish and Wildlife Service (2007) for flows tgp400 cfs, while the flow-habitat relationship
patterns for area and WUA deviated for flows gretitan 400 cfs.

Table 7
Binary Criteria Used to Compute Area For Spring-@€hinook Salmon Spawning Habitat

Veocity Velocity Depth (ft) Depth Substrate Substrate
(ft/s) Suitability Suitability Code Suitability
0.00 0 0.0 0 0 0
1.19 0 1.1 0 1.2 0
1.20 1 1.2 1 1.3 1
4.40 1 7.0 1 3.4 1
4.41 0 7.1 0 3.5 0
100 0 100 0 100 0
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Figure 1
Area and WUA for Spring-run Chinook Salmon Spawnmg¢he Upper Alluvial Reach
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Figure 2
Area and WUA for Spring-run Chinook Salmon Spawrimtghe Canyon Reach
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Clear Creek Biovalidation
Methods

This task had the following six subtasks: 1) core@008 juvenile habitat use to juvenile
Combined Suitability Index (CSI); 2) compare 200%gnile habitat use to juvenile CSI,

3) compare 2007 Spawning Area Mapping (SAM) to &@dl; 4) compare 2008 SAM to adult
CSI; 5) after building fall-run Chinook salmon #deriteria from unoccupieds in model, rerun
earlier analysis comparing SAM and CSI; and 6)eevstatistical approach for these. The
juvenile habitat use and spawning area mappingwasasupplied by the Red Bluff Fish and
Wildlife Office. Discussions during FY 2009 narredvthe scope of this work to examining data
from restoration sites 3A and 3B. CSI values fta 3B will be computed from the River2D
model developed for the Clear Creek IFIM study.| @G8ues for site 3A will be computed from
a River2D model that will be developed using: &gl hbopography data previously collected by
Graham Matthews and Associates; 2) substrate aret polygon mapping that the Energy
Planning and Instream Flow Branch conducted in B892 and 3) transect data collected by the
Energy Planning and Instream Flow Branch in FY 2009

Results

A transect was placed at the up- and downstream efnthe 3A study site. The downstream
transect will be modeled with PHABSIM to provideteasurface elevations as an input to the 2-
D model. The upstream transect will be used iibcating the 2-D model. The initial bed
roughnesses used by River2D are based on the eldssubstrate sizes and cover types. A
multiplier is applied to the resulting bed roughsess with the value of the multiplier adjusted so
that the WSEL generated by River2D at the upstreadhof the site match the WSEL predicted
by the PHABSIM transect at the upstream end obttee Transect pins (headpins and tailpins)
were marked on each river bank above the 900 cfsrwsarface level using rebar driven into the
ground and/or bolts placed in tree trunks. Suflagyging was used to mark the locations of
each pin. Vertical benchmarks (lagbolts in treelemrock points) were established, and marked
with paint and flagging. The location coordinatesdach transect pin and elevations of the
vertical benchmarks were determined using survaggRTK GPS.

Low, medium and high flow water surface elevatiairy,bed elevations, substrate and cover
data, and velocity sets were collected for thesteats at the 3A study site in FY 2009. Depth
and velocity measurements were made by wadingawtiading rod equipped with a Marsh-
McBirney® model 2000 or a Price AA velocity meter. A tapasvused to measure stations along
the transects. Substrate and cover (Tables 6 Jaaldr2y the transects were determined visually.

Substrate and cover polygons were mapped througheBA study site up to the 900 cfs water
surface level using survey-grade RTK GPS in FYR0Uhis data will allow us to assign
substrate, cover and bed roughness values to édoh bed topography data points previously
collected by Graham Matthews and Associates. e td conduct hydraulic modeling
construction and calibration and habitat simulafanthe 3A study site in FY 2010 once we
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have obtained the bed topography data previouslgated by Graham Matthews and
Associates. After we have completed the hydraabcleling construction and calibration and
habitat simulation for the 3A and 3B study sites,will be able to complete the first five
subtasks. The sixth subtask was completed in FO9 2ZBppendix A) by Western Ecosystems
Technology, Inc. under a Cooperative Agreementéddnaly the Energy Planning and Instream
Flow Branch. We plan to complete this entire taskY 2010.

Sacramento River Tributaries Flow and Temperature Monitoring
Methods

The purpose of this task was to produce regregsronulas that could be used to predict flows
and water temperatures for the following tributarmé the Sacramento River using flow and air
temperature data available on the Internet: Ap&IGreek, South Fork Cottonwood Creek,
Stillwater Creek, Churn Creek and Bear Creek. firsestep for this task was to identify
historical gage flow records that could be usedewelop regression formulas to predict flows.
Additional flow data was collected in FY 2009 tamiorate the flow/flow regression equations
and to develop flow/flow regression equations fidnutaries or locations which had never been
gaged. Flow measurements were made using a tapeasure stations and by wading with a
wading rod equipped with a Marsh-McBirffeyiodel 2000 or a Price AA velocity meter to
measure depths and velocities. Depths were mehtutbe nearest 0.05 foot and velocities
were measured to the nearest 0.01 foot/sec foe@insls at 0.6 of the depth. Starting in May,
we also noted the presence or absence of flowhfeettributaries of Antelope Creek (Butler
Slough, Craig Creek and New Creek) at the samettiatenve measured flows on Antelope
Creek. In addition, we deployed HOBO Water TempegeaPro V2 probes, manufactured by
Onset Corporation, at the locations where we ctefiow data. We installed two probes for
each stream for redundancy in case probes werduesto theft or high flows. Each probe was
placed in a 2-inch diameter PVC housing (with haleked into it) and caps and secured to trees
or other immovable objects near the water’s edgle #/8-inch cable. The thermographs were
set up to record water temperatures every half-hdtiermographs were initially deployed on
March 16 and 19, 2009 and data was downloaded thherthermographs every other month with
an optical shuttle. Daily average water tempeestuvere calculated for each thermograph, and
then the daily average water temperatures fontlegiermographs at each site were averaged to
produce the daily average water temperature at @tefor each day that data was collected.
We used the data we collected to develop flow/ftegression equations for tributaries or
locations which had never been gaged and regresefomater temperature versus air
temperature and flow.

Results

Table 8 summarizes the historical gage flow recos#s] to develop regression formulas to
predict flows, while Table 9 presents the regrasfiomulas. Figures 3 to 6 show the historical
gage flows and regression equations. No histogagk data is available for Stillwater Creek.
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Table 8
Historical Gage Data Used to Develop Flow/Flow Resgsions

Stream USGS Gage Number  Period of Record
Cow Creek 11374000 10/1/49-present
Cottonwood Creek 11376000 10/1/40-present
Deer Creek 11383500 10/1/40-present
Churn Creek 11372050 10/1/60-9/30/66
Bear Creek 11374100 10/1/59-9/30/67
South Fork Cottonwood Creek 11375900 6/23/82-9830/8
Antelope Creek 11379000 10/1/40-9/30/82
Table 9
Flow/Flow Regresssions
Regression Equation R?
Churn Creek Flow = Max (0, -4.19 + 0.035 x Cow @reéow) 0.565
Bear Creek Flow = Max(4, 1(§-0828 * 0724 xlog (Cow Creek Flo 0.908
South Fork Cottonwood Creek Flow = Max (0, -59.40.397 x Cottonwood 0.959
Creek Flow)
Antelope Creek Flow = Max( 0, -20.4 + 0.4977 x D€eeek Flow) 0.853

Figures 7 to 10 show the annual average hydrograplhurn, Bear, South Fork Cottonwood
and Antelope Creeks, computed from the period adnek flows for Cow, Cottonwood and Deer
Creeks and the flow/flow regression equations inl& 8.

We were unable to get access to the location ofiisterical gage on Antelope Creek since the
location is on private land. This gage was locatestream of the Edwards/Los Molinos Mutual
diversion dam. The only locations where we welle &thget access were downstream of this
dam, and thus we needed to develop a new flow/feayession for Antelope Creek downstream
of the Edwards/Los Molinos Mutual diversion dam.March and May, we measured the flow
of Antelope Creek at Highway 99. However, sinaftow in May was greater than the flow in
March, due to considerable flow coming from a ttédwy (likely an agricultural return flow)
located approximately 75 feet upstream of Highw@yv@e moved the discharge location for
Antelope Creek to the upper end of Cone Grove Rhskharges were measured at this location
in June through September. Based on the thermoglaia, it appeared that the flow for
Stillwater Creek dropped to zero on July 16, 20Bfaw in Cottonwood Creek had reached zero

by September 15, 2009.
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Table 10 summarizes the flow measurements that agerm FY 2009, while Table 11 presents
the regression formulas based on the data in Tidbdnd gage flows for Cow and Deer Creeks.
Figures 11 and 12 show the annual average hydrogifap Stillwater and Antelope Creeks,
computed from the period of record flows for Covd &eer Creeks and the flow/flow regression
equations in Table 11. Figures 13 to 15 show thasured flows for Churn, Bear and South
Fork Cottonwood Creeks relative to the regressmragons computed from historical gage data.
Table 12 presents the flow observations we madBléov Creek, Craig Creek and Butler

Slough.

Figures 16 to 20 show the results of the FY 200&mn@mperature monitoring, while Table 13
shows the regression equations we developed freriYh2009 water temperature data. Web
sites for the flow and air temperature data to phig the regression equations in Tables 9, 11
and 13 are given in Table 14.
Table 10
Fiscal Year 2009 Flow Measurement Data (cfs)

Date/ Churn Bear Stillwater South Fork Antelope Creek Antelope Creek at
Location Creek Creek Creek Cottonwood at Highway 99 upstream end of

Creek Cone Grove Park
Easting 05533120575441 0562804 0556046 0575817 0573812
Northing 44992044486979 4481286 4468219 4440215 4447042
3/16/09 79.2 184.3 6.3
3/19/09 28.8 212.8
5/26/09 1.7 13.8 8.7 58.1 14.4
6/24/09 10.23 24.6 6
6/25/09 1.56 2.22
7/23/09 0.16 3.7 0 0.12 1.36
8/26/09 3.95 0 0.287
9/15/09 <0.1 6.13 0 0 1.23

Table 11

Flow/Flow Regresssions

Regression Equation R?
Stillwater Creek Flow = 1§~ 161X log (Cow CreekFow 0.901
Antelope Cree¥ Flow = Max( 0, -9.08 + 0.135 x Deer Creek Flow) 98B

° Eastings and Northings are in UTM Zone 10, NAD 18@ters.
°This regression is for Antelope Creek at the upstrend of Cone Grove Park, and can be used

to predict Antelope Creek flows downstream of thisverds/Los Molinos Mutual diversion dam.
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Table 12
Fiscal Year 2009 Flow Observation Data

Date New Creek Craig Creek Butler Slough
5/26/09 Yes Yes Yes
6/24/09 Yes Yes Yes
7/23/09 Yes No Yes
8/26/09 Ye¥ No No
9/15/09 Yes No Yes

" Most of the flow in May and June and all of theafln July through September was coming
from a pipe located approximately 30 feet downstred the Highway 99 bridge.

2 All of the flow in August was agricultural returfofvs.
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Figure 16
Churn Creek Water Temperatures in FY 2009 Vers@g-5ehreshold For Smolt Survival
(Mesick 2009)
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Figure 17
Bear Creek Water Temperatures in FY 2009 Versug-5Bireshold For Smolt Survival

(Mesick 2009)
USFWS, SFWO, Energy Planning and Instream Flow &ran 31
FY 2009 Annual Report
January 19, 2010



Stilkwater Creek Water Temperature (o F)

ture {o F)

d Creek Water T

South Fork Cott

800
750
700

65.0

o Ap |
TAYAYA

550
500 T T T T T T T T
3/20/2009 4/3/2009 4/17/2009 5/1/2009 5/15/2009 5/29/2009 6/12/2009 6/26/2009 7/10/2009
Date
Figure 17

Stillwater Creek Water Temperatures in FY 2009 UWsrs9° F Threshold For Smolt Survival
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Figure 18
South Fork Cottonwood Creek Water Temperatures(i2®09 Versus 59° F Threshold For
Smolt Survival (Mesick 2009)
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Figure 19
Antelope Creek Water Temperatures in FY 2009 Veb&igd- Threshold For Smolt Survival
(Mesick 2009)

Discusssion

Flows for South Fork Cottonwood and Churn Creekgped to very low levels starting in July;
for this time period, flow in South Fork CottonwoGdeek was irrigation percolation into the
streambed while flow in Churn Creek was water patowy from irrigated landscape. As a
result, flows during this period give an incorrpadture of what is baseline for the watershed and
likely do not provide fish access from these cre€ekise regression formula for Stillwater Creek
in Table 11 should only be used for Cow Creek flgmesater than 26 cfs; based on the data we
collected in FY 2009, we would predict that theaflm Stillwater Creek would be zero for Cow
Creek flows of 26 cfs or less.

Churn Creek flow measurements in FY 2009 were gdliyeronsistent with historic gage
records with the exception of the flow measurenoenMarch 19. This flow measurement was
likely influenced by an extreme rain event on Matéthat was centered on the Churn Creek
watershed. Thus, we do not see this measuremenggssting that the Churn Creek flow/flow
regression no longer applies to Churn Creek. Heweve would recommend additional flow
measurements to confirm that the Churn Creek flow/fegression still applies to Churn Creek,
since the remaining measurements were taken atowrijows. It is possible that summer
flows in Churn Creek have increased since the 186640 water percolating from irrigated
landscape, since the flow/flow regression preditited Churn Creek flows would be zero from
June through September 2009. If this is the dhsdpw end of the Churn Creek flow/flow
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Table 13
Water Temperature Regresssions

Regression Equation R?
Churn Creek Water Temp = 36.5 + 0.451 x Air TenpG12 x Cow Creek Flow 0.866
Bear Creek Water Temp = 24.3 + 0.620 x Air Temp04187 x Cow Creek Flow 0.887
Stillwater Creek Water Temp = 35.2 + 0.558 x Aemip — 0.0163 x Cow Creek Flow 0.889
South Fork Cottonwood Creek Water Temp = 34.8 9D Air Temp — 0.00439 x Cottonwood Creek Flow 427
Antelope Creek Water Temp = 32.3 + 0.534 x Air Teatph0102 x Deer Creek Flow 0.892
Table 14

Web Sites for Data to Plug in to Equations in Talflell and 13

Parameter Web Site

Cow Creek . I _ : - -
Elows http://waterdata.usgs.gov/nwis/dv?cb 00060=on&fdaninl&site no=11374000&referred module=sw

Cottonwood http://waterdata.usgs.gov/nwis/dv?cb 00060=on&fdannl&site no=11376000&referred module=sw

Creek Flows

Deer Creek _ PN _ : _ -
Flows http://waterdata.usgs.gov/nwis/dv?cb 00060=on&farhtnl&site no=11383500&referred module=sw
Air ) )

. - Q=
Temperatures http://cdec.water.ca.gov/cgi-progs/queryDaily?s=RED
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regression (i.e. Cow Creek flows less than apprateéhy 150 cfs) would no longer result in
accurate estimates of Churn Creek flows. Althotnghflow/flow regression for Bear Creek
consistently overestimated Bear Creek flows, nedatido measurements taken in FY 2009, the
Bear Creek flows measured in FY 2009 fell withia tAnge of historical gage flows. Similarly,
the South Fork Cottonwood Creek flows measuredvir2609 fell within the range of historical
gage flows. Thus, it appears likely that the Bead South Fork Cottonwood Creek flow/flow
regressions still apply to Bear and South Fork @wttood Creeks; additional flow
measurements would help to confirm this conclusion.

Water temperatures in FY 2009 exceeded a 59° Bhbte for smolt survival (Mesick 2009) on
4/13, 4/19, 3/27, 3/27 and 3/20 for, respectiv€lgurn, Bear, Stillwater, South Fork

Cottonwood and Antelope Creeks. This suggestsGhatn and Bear Creeks may be better
choices for restoration activities than the otlhee¢ Sacramento River tributaries, since water
temperatures stay below the 59° F threshold longjee water temperature regression equations
all showed a negative relationship between watap&gature and flow, i.e. water temperatures
were lower at higher flows. This suggests thaewtmperatures in these tributaries will stay in
an acceptable range for a longer period in weears; versus FY 2009. We recommend that
additional water temperature data be collectedyir2€10 to verify the water temperature
regression equations in Table 13.

Red Bluff Interim Pumping Plant Screens Hydraulic Evaluation
Methods

On June 1 through 11, 2009, an interagency teath,representatives from the Service,
National Marine Fisheries Service and the CDFG,guesl near-screen velocities on the 10
cone screens located on the intake for the Red Bitdrim Pumping Plant (Appendix B).
Approach and sweeping velocities were measuredavbnTek 16 Mhz Acoustic Doppler
Velocimeter (ADV) provided by the CVPIA Anadromokish Screen Program. The ADV
measured near-screen velocities 3 inches fromdfees face. Velocities were measured at 48
locations, in an array of 6 depths and 8 positaemasind each screen. Velocity measurements
were recorded at a rate of 25 HZ for a minimum®&6conds.

Results

Approach velocities on screen numbers 6 — 10 Hadlg even distribution of flow through the
entire screen area, with no single point excee@id§ ft/s. Flow distribution on screen numbers
1 — 5 were heavily influenced by river current. pigach velocities in areas receiving direct
impact of the current far exceeded the design targjee of 0.35 ft/s.
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Discussion

We recommend that three complete sets of additilatity measurements be made on the Red
Bluff Interim Pumping Plant screens in FY 2010 una@eange of different Sacramento River
flows and pumping plant operations. The flow aetbuity information obtained at the cone
screens will help fishery managers assess whetbdifigations of baffles have ameliorated
impediments (e.g. impingement), caused by the tipesaof the interim pumps, to the
downstream migration of various federally listeshfspecies.

COMPARISON OF PHABSIM AND RIVER2D MODELS

We published a paper (Appendix C) in the JanuaB@d8sue of the International Journal of
River Basin Management presenting a comparisopaieing habitat predictions of PHABSIM
and River2D from our 1995-2001 CVPIA-funded studieshe Merced, American and
Sacramento Rivers. The paper presents the flowdtablationships and biological validation
results of PHABSIM and River2D.
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Review of Statistical Approach for Clear Creek Biovalidation
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INTRODUCTION

A critical part of any Chinook salmon habitat moweihe evaluation and validation of model
performance. Evaluation of a model asks the b@séstion: “Does the model in its use of the
available data answer the researcher’'s modelinig'gosiodel validation is perhaps the most
important stage in the model building process buifien overlooked. Validation is the process
used to demonstrate that the model produces rel@aiiput. This paper surveys the most
relevant literature on techniques used to evalaatevalidate Chinook salmon habitat models.
The review identifies the strengths and weakneskt®g evaluation/validation methods used in
the literature reviewed, discusses the approprsenf the various tests for assessing model
adequacy and draws conclusions on which technigugesegarded as the most effective. Also
reviewed are selected journal articles of non-Colingalmonid species whose habitat
requirements are similar and when evaluation/vabdamethods are considered to be relevant to
those used in Chinook habitat models. Based ofiténature and the author’s experience,
recommendations are made on identifying an optapploach for model evaluation and
validation.

The paper is organized into the following sectigraametric tests, non-parametric tests,
analysis of residuals, ad-hoc methods and simulagohniques. Care will be taken to examine
the relevance of the given method to the modelorgponent being considered by the researcher
in the given journal article (ie. whether evaluatie being done at the sampling stage, for the
purpose of verifying the hydrodynamic componenbiofogical component, overall goodness of
fit, or model comparison). When closely relatestg¢o those found in the literature seem
relevant and useful these are reported with kelyaaatbeing cited. An indexed table (Table 2)
summarizing the review by method, journal artiale éest objective is given to help reference
the reviewed material. Variance components relaiedodel evaluation/validation methods will
be noted.

Section 1 — Parametric Techniques
Section 1.1 - Pearson correlation Coefficient () &

Pearson’s product-moment correlation coefficiengsand R measures are single number
descriptors of the degree of linear associatiowéen paired samples and model fit respectively.
R?, in the case of linear models, expresses thédraof variation in the response explained by
the predictors. Rused in logistic regression takes a number of $orequiring the user to check
software documentation to be sure whichisRactually being used. This is essential as the
meaning and interpretation of Rpplied to logistic regression models varies antbeglifferent
forms. Since r and Rare narrowly focused on only a single aspect eftiodel/data

relationship other methods of model evaluation medlel validation should also be used.



Ward et al. (2009) used correlation arfdt&test for a relationship between invertebratertziss
and canopy shading and to determine whether thatiar in prey biomass was confounded
with salmon stocking density or loss. In the Wstutly confidence intervals are reported for R
Palm et al (2009) used’f a linear regression of minimum winter habitaitability for brown
trout and the percentage (arcsine square roatftraned) of tagged trout remaining in their site
of origin. The correlation coefficient and Rre applied in instream flow incremental (IFIM)
models (Bovee 1978, Bovee 1998,Wood 2009) to asseksalidate the calibration of linear
regression models in which data input as dischdegeperature, depth, velocity, substrate and
cover is predicted using gauging station data lbersampled data. Some background on the
concept of IFIM will be given to clarify the contieix which r and Rare used in this type of
model. The Instream Flow Incremental Method (IFIM)s developed by personnel of the
Cooperative Instream Flow Service Group, U.S. &isth Wildlife Service, Fort Collins,
Colorado. IFIM allows quantification of the amouwftpotential habitat available for a species
and life history phase, in a given reach of straamifferent channel configurations, slopes,
water velocities, depths, substrates and otheripdiygariables (Bovee 1978). IFIM is
composed of a library of linked models that chagaze the spatial and temporal features of
habitat resulting from a given river regulatioreaftative where the model is adaptive and can be
tailored to specific needs (Bovee et al. 1998).

One source of input data for hydrodynamic modetissharge. The amount and type of error in
discharge measurement in space and time is ceotaiffiect the output of the final model.
Gauging station error analysis is discussed ircthese book on IFIM developed by Bovee
(1996). In many cases the hydrologic input compboéthe model is to be evaluated under
situations in which semi-permanent stream gaugematalled and calibrated later to be used to
relate river stage to discharge within the stuéche Evaluation of model input data at this stage
consists of developing and testing various regoessiodels relating discharges between the
semi-permanent and long-term gages (Bovee 1996¢a%t squares linear regression is
performed between the logarithms of the stage lamdogarithms of the discharge. An indicator
of the overall quality of a gage station regressimlel is a goodness of fit criterion such ds R

or adjusted R( ngdj) for multiple regression models. In this contBXis the portion of the

variation in log transformed stage explained byitildependent variable(s), log transformed
discharge (Neter et al. 1996, Mendenhall and Smz2@04). Rjdj provides an adjustment for the

number of independent variables in the model andiges some protection against the effects of
model over fitting. The correlation coefficiem) r multiple correlation coefficient may also be
used, where Bovee (1996) recommendstiegual 0.90 or greater where this highly

significant (e.g., p < 0.05). If this criterionrfois not met the author advises using another
method or reducing measurement error, though thieaddoy which this could be achieved is

not given. It could be argued that this cutoffdefor r should also be based on the researcher’s
expected model performance and the objectiveseostiidy since lower tolerances for final
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model predictions would necessitate higher valdé*@nd r for acceptable calibration of
physical model components. Sample size will afsecathe precision of regression models,
however the author does not address the key re&dtip between sample size, model evaluation,
and the statistical power necessary to correcicta false null hypothesis of non-zero
regression coefficients. In other words r arfchBed to be supplemented with other tests of
model adequacy.?and r are examples of model evaluation whichifiadl the category of re-
substitution methods where the data used to fittbdel is also used to test it. Re-substitution
methods tend to suggest an overly optimistic acttogmf model goodness of fit and validation
since they optimize only over the error structuréhe data on which the model was fit (Neter et
al. 1996, Mendenhall and Sincich 2004).

Williams (2009b) suggests the use of logistic regi@n as an alternative to habitat suitability
models. Knapp and Preisler (1999) in developingthimodels to predict Chinook salmon
redds applied a logistic regression analysis irctvifi? was reported as a measure of model fit
and for the purpose of model comparison. Varioeasnres called¥have been proposed for
use in logistic regression as a measure of modmlmgess of fit (Hosmer and Lemeshow 2000,
Mittlbock and Schemper 1996, Menard 2000, Shtatktrad. 2000 SAS, Paper 256-25).
Analogous to Rin linear regression defined as the ratio of eixgld sum of squares to total sum
of squares, Rin logistic regression is a measure of proportioeduction in error measure.
These measures apply comparisons of the predieieds from the fitted model to those from
model (0), a no data or intercept only model. Bheeasures may best be used to compare
models fit to the same data, Hosmer and Lemesh®®.2@owever McCullagh and Nelder
(1989) warn against sole reliance on the DeviancePRearson’s statistic so that use of a measure
of R? for logistic regression should be considered, t&ind et al. 2000. According to Mittlbock
and Schemper 1996 R2 measures for logistic regmressiould have three properties: (1) the
measure should have an easily understood intetjore{@) the measure can attain a lower
bound of 0 and an upper bound of 1 and (3) the uneas consistent with the character of
logistic regression (i.e., not being changed hipealr transformation of model covariates).
These authors recommend two for regular use: thared Pearson correlation coefficient of
observed outcome with the predicted probability atidear regression-like sum-of-squarés R
For a situation with n covariate patterns the sgdid@earson correlation coefficient is

. {Zl(y V)% "_T)T
(7’|

o]
Wherey =77=n/n. Alinear regression-type measure is

(1.1)

n
i=1 i=1



>(y
R? =1—§— (1.2)

Hosmer and Lemeshow 2000 provide versions of tlremwasures which apply to the case when
J < ncovariate patterns

r; 5 ; (1.3)
{;(V. -mYy) HZ( M7 ~ ) }
and
>(y,-ma)
Re. =1--5 (1.4)

The R available in SASR?, is defined as follows

R:, =1- exp{ 3 logL(M)~ logL( 9] /r} (1.5)

wherelogL (M ) andiog L (0) are the maximized log likelihood for the fitted nebdnd the

“null” model having the intercept only, amds the sample size, Shtatland et al. 2000. Simse
measure cannot attain a value of 1, Nagelkerkel(l@@&ve the following adjustment:

Adj= Rs= Repd [1-exp( 2logl( § /)] (1.6)

which is labeled in SAS as “Max-rescaled RSquaradj - R,.has been criticized by Mittlbock
and Schemper (1996) in that there is no reasonthdgcaling for intermediate values of the
measure should be adequate. Thus in applicatiengalue ofRZ,;may be too small and the
value of Adj - R, may be too large. To correct for this shortconfigatland et al. 2000
propose a deviance’Rs follows

RZe, =[log L(M)~-logL(0)] /[ logL(S)- logL( Q] (1.7)



wherelogL (M ),logL(0) ,and logL (S) are the maximized log likelihoods for the currently

fitted, “null”, and saturated models correspondyngiosmer and Lemeshow (1989), Agresti
(1990, Menard (1995)). The essenceRjf, is that it compares the log-likelihood gain achitve

by the fitted model (the numerator in 1.9 ) witle thaximum potential log-likelihood gain (the
denominator in 1.9)), Shtatland et al. 2000. Tinhers state that the measure can be interpreted
in terms of proportionate reduction in recoverahfermation and since it is a measure of two

log-likelihood gains,R%., can be treated as an indicator of goodness-of Afitother R analog
that is based on the log-likelihood

n

(y.71)=>{ v log(7) +(1- y) log( 1~ 7 )}

i=1

where z is the observed valu&’is given by

(1.8)

Here the negative log-likelihood is used, indicgtihat a smallerl (z, 77) corresponds to a
better fit. R? is called pseudo An Stata’s logistic commandR?= 0 when model (1.3) is the
base model an®”= 1 when(, =y.. Since it is based on the log-likelihobg, 77) ,Laio and
McGee 2003 point out that the value 8f cannot decrease when additional predictors are
added to the model; this is not true . Based on their experience with extensive sinedlat
data, Laio and McGee 2003 found thaf1.4) andR?(1.5) are almost identical numerically.

Laio and McGee 2003 developed improved, and R}, Mittlbock and Schemper (1996),
with the following

- _, @)1 pre,) 2 w9
adj” _ ~ :
|(z, 7)) +(1+&,) /1 2
IPEP
R =1——IPEO (1.10)
IPEP
Roa =1~ PE? (1.11)

where the bias corrected inherent prediction emoegiven by
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IPEP =-n"'l(z 77)- B(m) and

IPE? =n™> (y -77) - B (),

i=1

Respectively. The bias terms above use independent replications of Y, in logistic regression (1.3). The
Rz’adj and Réadj can be implemented in R, R Core Development Team 2005, using the function R2.ad]

available from the authors at http://www.geocities.com/jg_liao/softwarghe B, (77) and B, (77)are

evaluated using the Monte Carlo method. The Monte Carlo sample size N is chosen so that, with 95%
confidence, the desired expectation is estimated with a relative error less than 5%. In simulation studies

Liao and McGee 2003 found that R)Z and R2 increased drastically when irrelevant predictors were
added to the model. R’ and R, were most robust with respect to irrelevant predictors and

were closest to the true coefficient of determorati It would seem appropriate that
investigators report which specific measures 6f ae being used as results can vary among
measures for the same study. Hosmer and Lemest@f) state that even though logistic R
may be low, the model may fit the data well. Tlkaytion that people are used to seeing high R
in multiple linear regression studies . The awhavise that researchers using logistic
regression should use and report other measugmoohess of fit as well as’R

Caution should be used in reporting p-values ferRbearson’s correlation coefficient based on
thet-distribution as the assumption that the samplésvidndependent normal distributions is
needed for the-values to be valid (Efron 1982). An alternatisdo use Kendall’s rho or
Spearman’s tau to estimate a rank based measassafiation (Conover 1999). Non-normal
theory confidence intervals for all three of theserelation measures can be obtained through
bootstrapping (Efron 1982, Efron and Gong 1983z&2008, Manly 1997, Davison and
Hinkley 1996). Though not found in any of the joalrarticles reviewed, the coefficient of
partial determination and its square root as asamesof correlation, is useful in multiple
regression models of filter out the reduction fc@nditional on other variables being included

in the model. For exampler , , measures how much smaller relatively, is the wiig in the

conditional distributions of ¥given Y,, Yz and Y, than it is in the conditional distributions of
Y1, given Yz and Y, only (Neter et al. 1996).

Section 1.2 - Statistical Hypothesis Testing andaRies

A number of Chinook and steelhead habitat modelsl@ythe use of hypothesis testing and p-
values( Wood 2009, Palm et al. 2009). Palm gR8al09) compare habitat suitability range and
explanatory value (Rlinear regression) of the variation in the prdjmor of the salmonid
population that remained stationary and overwirtaevehin different sites from late summer
until late winter by comparing-values. However there is a current trend awamftioe use of
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hypothesis testing and p-values (Johnson 1997, Haumrand Anderson 2002, Royall 1999).
Johnson (1997) advises against the use of P-vahgbstatistical hypothesis testing since these
are often confused with or used instead of modaluations based on measured effect sizes
related to a-priori know levels of change in pr@ssswhich have proven effects on a given
response. Instead the use of confidence inteivaéssommended since these provide a
probability interval of effect size and containmehtero in the interval indicates P>0.05 if the
interval is at the level 95%. Confidence intengilge an estimate of uncertainty as well. A 95%
confidence interval of (-20, 400) informs us ttie parameter is not as well estimated as if the
interval was (100, 150). The author distinguishetsveen statistical hypothesis testing and
scientific hypothesis testing. Scientific hypotisagsting should replace statistical hypothesis
testing since the former postulates a theory whaerates predictions. These predictions are
treated as scientific hypotheses, and an experim@anducted to try to negate each hypothesis.
If the results of the experiment refute the hypst$iethat result implies that the theory is
incorrect and should be altered or thrown out.ndoh points out that most statistical hypotheses
are known a-priori to be false. Estimated magmtudf effects with their standard errors and
other measurements of precision, such as the cmefts of variation, should always be reported
if P-values are given. Johnson 1997 encourageduoting the same study at the same time but
at different sites to obtain comparable resuldiférent spatial scales. Similarly replicated
studies at the same sites over time allow evalnatfidemporal effects. Evaluating a model
ideally would involve the comparison of the reswltdained by different investigators. Meta-
analysis provides methods for combining informaffimm repeated studies allowing less
reliance on significance testing by investigatieglicated studies, Lipsey and Wilson (2000).
An important aspect of model evaluation shoulddddtermine the relative importance to the
contributions of, and interactions between, sevematesses (Quinn and Dunham 1983) so that
for this purpose estimation becomes more impottan hypothesis testing.

Section 1.3 — t-tests and ANOVA, ANCOVA, Asymptoliormal Theory Confidence Intervals
and Prediction Intervals

t-tests, linear regression, ANOVA and ANCOVA aredigea wide variety of salmonid habitat
models and are represented in many of the jourtiales reviewed. In addition to habitat
models in which the dependent variable is contisyexamples were found in which the
dependent variable was a proportion or percent&igeod (2009) applied t-tests to compare
survival of brown trout fry across years in physitabitat models of temperature effects.
ANOVA was used by Ward et al. (2009) to test fdfedtences in invertebrate biomass across
sites and by Palm et al. (2009) to evaluate diffees in length between groups of fish and
habitat suitability index between tagging sites.tHis same study analysis of covariance
(ANCOVA) was employed to test whether increasedlstg density of salmon fry yielded
increased population density where log transforstedking density was the predictor and
stream-year combination was the blocking factoall&gher and Gard (1999) used ANCOVA to
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investigate the relationship between mesohabitai®ebd red numbers from 1989 through
1996 in the Merced River and from 1991 through 1@9he Lower American River. The
dependent ANCOVA variable was number of redds,thedcategorical variable was year where
the covariate was WUA. McCarthy et al. (2009) usB§NOVA to evaluate effects of forest
cover, stream temperature, season, and fish ag@drconsumption and growth efficiency of
juvenile steelhead. Here the food consumption dégetrvariable consisted of several functional
groups of invertebrates such as soft bodied laaeatic nymphs, winged insects and others.
One of assumptions of MANOVA is that the data falla multivariate normal distribution. This
can be a sticking point when considering use &f téthod for which the dependent variable is
multivariable. Johnson and Wichern (2002) provests for determining whether data are
multivariate normal. Rosenfeld et al. (2008) aggbli-tests, linear regression and ANOVA
effectively in assessing the effectiveness juverileo streamside artificial side channels.
Researchers must ensure that basic assumptiondegf@ndence, constant error variance and
normality be met as part of the model evaluatioiidesion process when using linear models.
Castleberry et al. (1996) recommended that usePH&BSIM should take sampling and
measurement problems into account, and warnedBbktnates of WUA should not be
presented without confidence intervals, . . .’

Section 1.4 — Likelihood Ratio Tests

Likelihood ratio tests were used by Knapp and Rre{4999) to test the significance of each of
the independent variables on the probability ofirptesence. This test requires nested models,
that is models that can be transformed into theknone by fixing one or more parameters.

Section 1.5 — AIC, AICc Information Theoretic Mettso

Information theoretic methods have gained acceptancecent years often replacing or
supplementing traditional stepwise and best-sulmetiel selection and variable ranking. AIC
is based on the likelihood of the model with a téhat penalizes for number of parameters.
The procedure involves selecting the best modaldallection of models based on the one with
the lowest AIC value. AlCc is the bias correctedf recommended for use when sample sizes
are smallf/K < 40) (Burnham and Anderson 2002). AIC is caltadaas follows (Burnham and
Anderson 2002):

A|Cz—2|og(L(é|y))+ 2K (1.12)

AICc is given as:



2K (K +1)

1.13
n-K-1 ( )

AICc= —2|og( (6] y)) + 2K+
Knapp and Preisler (1999) in a logistic regressimuel relating water depth, water velocity, and
substrate size to spawning sites of golden troetl Y8C to determine the relative importance of
significant variables by adding variables to thedelan the order of their associated AIC value,
such that the independent variable with the largéStvalue was added first and the variable
with the smallest AIC was added last. Petersai. ¢2009) developed a habitat model evaluate
a stream classification system for estimating fesponse to changing streamflow. To identify
the best approximating model Peterson et al. (2608l possible combinations of the predictor
variables including quadratic terms and two-wagiattions and evaluated the relative support
for each model using AlCc. McHugh and Budy (2004@d AlCc with other methods to choose
among competing models which evaluated pattermedaf site selection in relation to physical
habitat variables (depth, velocity, and gravel simng logistic regression and which habitat
suitability for two populations of spring Chinoo&lsion in Idaho.

It should be noted that AIC selects the best modalset. The researcher still must find the best
collection of models that fits the available daléhat is AIC cannot be considered a substitute
for a fisheries habitat modeling approach.

Section 1.6 — Logistic Regression Goodness of &g

The logistic regression model is given by

y, ~ Bernoulli(77) withlog it(77) = b+ hx +..+ b x,

i=1,..n. (1.14)

Knapp and Preisler (1999) usgdtest to evaluate goodness-of-fit of a logisticresgion which
predicted redd site location. The goodness-diditveen the observed and predicted
probabilities of red presence was determined usiggstatistic, which was then compared with
a y*distribution with the required degrees of freedotrere a small p value would indicate that
the model does not provide a good fit to the d&ice it is not clear whicly*test the authors

were actually using some background is given omideins and procedures of two of the more
commonly used logistic regression goodness oééitst

Two standard measures of goodness of fit are thmeafisquared Pearson residuals

2 (yi B ”VATJ) A A e’
X’ = ,where’y = mr= m————, (1.15)
% o) N M
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where g(x)is the estimated logit and the deviance
J 2
D=>"d(y,.7) (1.16)
=1
where the deviance residual is defined as

d(y.75) =+ Z{V 'n(my,,}(m— Y)'n(n;}(l;_ﬁj)ﬂ 1.17)

where the sign, + or -, is the same as the sig(rypf— m 7z ) D is the likelihood ratio test

&

statistic of a saturated model with J parametersugethe fitted model with p + 1 parameters and
is generally chi-square distributed with- p— 1 degrees-of-freedom, Hosmer and Lemeshow
2000. If Jis defined as the number of covariatigons where a covariate pattern is a distinct set
of values taken on by the p explanatory variablesway have < nor J = n, the latter case

often occurring when there are continuous variabléghenJ = n, p-values for these two
standard methods of evaluating the goodness of &tlogistic model are incorrect when using
the x° (J - p—1) distribution. Hosmer and Lemeshow (2000) resolési problem by
developing the Hosmer-Lemeshow test. The Hosni@rmeshow test is a widely used measure
of logistic regression goodness of fit and is impdated by many software packages such as
SAS and STATA. The test groups the data baset@nalues of the estimated probabilities.
There are two ways of grouping: (1) collapse thetdbased on percentiles of the estimated
probabilities and (2) collapse the table based»adfvalues of the estimated probability. Using
g = 10 groups for y = 1 estimated expected value®htained by summing over the estimated
probabilities over all sites in each group, thengedone for y = 0 where the sum is over one

minus the estimated probability. The Hosmer — Lemog& goodness of fit statisti€, , is
obtained by calculating the Pearson chi-squaresstatrom theg x 2 table of observed and

estimated expected frequencies. From Hosmer antleow (ZOO)f: is defined as follows:

i rE ~%) (1.18)

ang (1-7)

wheren, is the total number of sites in tk8 group, c.is the number of covariate patterns in the
kK" decile,

C
=Yy,
j=1
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is the number of responses among ¢heovariate patterns, and

is the average estimated probability. Hosmer améthow (1980) show that whér= n and the
fitted logistic regression model is the correct mlothe distribution of the statistiC is
approximated by the chi-square distribution vgth 2 degrees-of-freedomny? (g —2) and claim

that it is likely that x* (g - 2) approximates the distribution wheh= n.

A goodness of fit test like one of the above shdoddin essential feature of any habitat
suitability model. The tables of individual obsedvand predicted values along with their

x>values can provide valuable information on wheeerttodel fits the data well and where it
fits poorly. The Hosmer-Lemeshow test is availadden option in the SAS logistic procedure.

Section 2 — Non-Parametric Validation Methods
2.1 — Using New Data to Validate a Model, Crossid&tlon and Resubstitution
Resubstitution

Resubstitution as the name suggests tests the s pdedictability by comparing predictions of
the observations with the observed data basedeoddta that was used to fit the model. This
technique is somewhat “self fulfilling” in thatrgie the model optimized over the particular
structure, error pattern and outliers of the gidata, the probability of getting good predictions

is expected to be higher than testing predictedugseobserved values based on independent data
not used to fit the model. Using new data to fimdclassification error rates is ideal. A second
best option is cross validation which leaves ostilaset of data, refits the model on the

remaining data (“training set”) and calculates naissification rates on the left out data (“test”

set) (Breiman and Spector 1992).

Using New Data to Validate a Model

Castleberry et al. (1996) advocate that an adaptemeagement approach to assessing model

adequacy in which active manipulation of flows lirting temporary imposition of flows which
might be harmful be incorporated. This in essaa@way to come up with new data, possibly
outside the range of existing data, for model eatam for boundary conditions.

Williams (2001) asks the question “How well do tAdABSIM models predict the actual values
of depth and velocity within the cells.” The autlsoggests a method which is compatible with
the Instream Flow Incremental Methodology (Bovealel1998), and is applicable to either one
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or two-dimensional versions of PHABSIM or to otmeodels that combine hydraulic models

with biological models. The method is as followgelect cells in the study reach randomly with
enough randomly distributed measurements of deptbcity, substrate or cover within the
chosen cells to estimate both the means and vasanc other measures of central tendency and
dispersion, to obtain a given degree of accur&ullect the data over a range of discharges
since the models may be intended to evaluate haliéa a range of discharges. Compare the
estimated means to model predictions. Display nreasand predicted values using scatter
plots. Differences between measured and prediakaes should be summarized in box plots or
error dispersion plots as well as by statisticahsuges. Predictions of the biological models
should also be tested and uncertainties in botecasf the modeling should be reported.

Thomas and Bovee (1993) identify a central quasttan HSC developed in one stream (the
source stream ) be used to determine the qualdygaantity of microhabitat in another stream
or different reach (the destination stream ochga Transferability is defined as the condition
in which fish should use higher quality microhatsitan greater proportion than they utilize lower
quality microhabitats, if the HSC have correctlgmtified high and low quality. The authors
describe a technique to test the transferabilityadfitat suitability criteria. A requirement isath
it must be possible to identify a moderate numbey.( 30-60) of locations occupied by the
target species in the destination stream or rdadtthe authors do not explain how this sample
size was determined. The first step in testintpdd is obtaining all of the criteria that arebi®
tested. Next the destination stream is sampletb@@tions that are either occupied or
unoccupied by the target organism. At each samslite, the following data are collected at
locations that were or were not occupied by thgetspecies:

(1) Occupancy (whether location was occupied or ungiect),

(2) Species and life stage, if occupied,

(3) Activity, if known (usually not known unless obsedvdirectly),

(4) Depth at sampling location,

(5) Mean column velocity at location,

(6) Cover type, if used by target organism (often maiwkn unless observed directly),
(7) Substrate at location, if applicable to criterianigetested,

(8) Nose velocity, if applicable to criteria being bt

(9) Adjacent velocity, if applicable to criteria beitested, and

(10) Distance to cover, if applicable to criteria betegted.
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From the habitat suitability criteria, the micattitat variables for each location can be
classified as being optimal, usable, suitable,mmuitable by using the frequency distribution
method described above. Once optimal, usablagldaitand unsuitable ranges for each variable
have been defined, the composite suitability fahdacation is classified:

(1) For alocation to be optimal, all of its microh@bicomponents (e.g., depth, velocity, and
substrate) must be optimal,

(2) A location is considered usable if one or morétomponents is classified as usable, but
none are classified lower than usable,

(3) A location is considered suitable if one or moré®tomponents is classified as suitable,
but non are classified as unsuitable, and

(4) A location is unsuitable if one or more of its campnts is unsuitable.

If the suitability criteria are transferable to tthestination stream or reach two conditions should
be met: (a) there should be proportionately margetaorganisms in microhabitat classified as
optimal than microhabitat classified as usable, @dhere should be proportionately more
target organisms in suitable microhabitat thannsuitable microhabitat. Null and alternative
hypotheses are tested using 2 x 2 contingencysanid a one sided chi-square test given as:

T= VN (ad- bg (1.19)

J(@+b)(c+ d)(b+ d

where N is the total number of measured locatians the number of occupied optimal
locations, b is the number of occupied usable lonaf ¢ is the number of unoccupied optimal
locations, and d is the number of unoccupied udabkgions. Suitable locations are substituted
for optimal locations, and unsuitable for usabléest classifications of suitable and unsuitable
microhabitat.

Optimal| Usable| Total
Occupied a b a+b
Unoccupied ¢ d c+d
Total a+c b+d N

For a set of habitat suitability criteria to be smered transferable, both null hypotheses should
be rejected at the 0.05 level of significance.ti€al values of T are obtained from the normal
distribution tables (Conover 1980).

Cross Validation
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A model validation method recommended by Bovee §129%d used in many fisheries habitat
suitability models is the jackknife or leave-ond-oross-validation (LOO). Olden et al. 2002
compared re-substitution versus a jackknife apgraaenodel validation of species distribution
logistic regression classification predictions &maind the re-substitution method gave biased
results whereas the jackknife approach gave relgtivnbiased estimates of model performance.
The estimated rates of model correct classificati@shown to be substantially influenced by
species prevalence (i.e., the proportion of siteghéch a species is present). This can result in
poorly performing models being viewed as powerffitHugh and Budy (2004) used LOO to
test presence absence predictions from a Chindolosared site logistic regression model. The
authors also used resubstitution and compared eismiassification rates for the two methods

in which resubstitution classified 76% of the datass validation correctly classified 70%. The
procedure runs as follows: the researcher leavesraiobservation at a time refitting the model
using the remainingn —1points. This “training” model is then used to potdhe left out point.
Repeating the procedure overmbbservations of the data and summingrtisguared leave out
errors (observed minus leave one out predictiovggythe prediction error sum of squares
(PRESS). Better models are those with smaller FRREfBues. PRESS values can be calculated
without requiringn separate regression runs, each time deleting foithe o cases. The error

from omitting theith case is called the deleted residual and is gwen

d =

_&
cIh (1.20)

Wheree is the ordinary residual for the ith case @b the ith diagonal element in the hat

matrix, by = X ( X X)_1 X .

Prediction B (Rﬁred) is the difference between the total sum of squarel the prediction sum of

squares (PRESS) expressed as a fraction of tHestotaof squares in the linear regression case
and is useful in comparing models across sitesiamperiods since it is calculated with data
not included in model calculation. Some softwasekages such as R and Minitab offer PRESS
as part of their regression routine.

Related to LOO is a method called cross validatiGnoss validation is a data partitioning

method that can be used to assess the stabiliigraineter estimates, the accuracy of a
classification algorithm, and the adequacy ofteditmodel (Rizzo 2008). A researcher can
partition the data into training test sets. Thelelas estimated using the data in the training set
only, and the misclassification rate is estimatgdunning the classifier on the test set consisting
of a subset of the original data. Similarly, thieof any model can be assessed by holding back a
test set from the model estimation, and then ugiadest set to see how well the model fits the
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new test data. A second version of cross validagdK-fold” cross validation, which partitions
the data int test sets (test points). The data could be did/idto any number of K partitions,
so that there aré test sets. Then the model fitting leaves outteseset in turn, so that the
models are fitted times. In using cross validation to perform moadldation the prediction
error can be estimated without making strong distronal assumptions about the error variable
(Breiman and Spector 1992). An example taken fironzo (2008) involves model selection
from four regression models. These could be hygrathic models used to simulate, predict or
calibrate discharge, temperature or water qualityiegrohabitat (Y) from measured data (X):

1. Linear:Y =p4,+pB X+¢.

2. QuadraticY = g, + B, X+ 3, X +¢.

3. Exponential:log(Y) =log(B,)+ B X +¢.
4. Log-Log: log(Y) =g, + B log( X)+e.

Once the model is estimated, we would like to as#esfit. Cross validation can be used to
estimate the prediction errors as follows for kdf@eave out sets of size k) cross validation:

1. Partition the original sample into K subsamples.
2. Of the K subsamples, a single subsample is retasdde validation data for testing the
model, and the remaining K — 1 subsamples are as#¢i@ining data. Fit the models and

compute the predicted responses for the test p@jnts@’o +,f3’1>§for example. Compute the
prediction errorg, =y, — ¥ .

3. The cross-validation process is then repeated Kdi(the folds), with each of the K
subsamples used exactly once as the validation data

. - A 1 &
4. Compute the estimate of mean of the squared piedietrorsg? :k—zgiz :
n4

The model which has the smallest mean squaredagbiederror is the model which has the best
fit for the data. Peterson et al. (2009) estim#tedaccuracy of a large scale channel
classification model for assessing the potentif@at$ of river regulation and water use on stream
fish communities by using 10-fold cross validatiorwhich the observations for the “fold” are
chosen at random. The data was randomly placedLihgroups, data from one group were
excluded, the model was fit with data from the remmg nine groups, and the percent of each
channel unit type was predicted for the excludexigr This procedure was repeated for each
group (10 times) and error was estimated as tlierdiice between the predicted and measured
channel unit composition. Peterson et al. (20@®iaed two additional model performance
measures from the cross validation analysis: lestsnated as the mean difference, and
precision as the square root of the mean of tharequdifferences across samples.
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In stratified K-fold cross validation, the foldseaselected so that the mean response value is
approximately equal in all the folds. For examptea model with a dichotomous dependent
variable there would be equal numbers of succems#ailures in each fold. Kohavi (1995)
found in extensive simulations using moderate tgdalata sets that stratified ten-fold cross
validation was superior to the leave one out metiratiwas as good as bootstrap methods.

Breiman and Spector (1992) found in an extensiveikgition study that at least 5 folds should be
used, 10 is best and that cross validation workeaed! as the bootstrap in model selection. A
heuristic given by Huberty (2006) recommended feispnce/absence models is to use a ratio of
training to testing cases of [1 p-1)* ™ wherep is the number of predictors.

Deleted residuals should be plotted versus fittetlindependent values in order to determine
where the model fits poorly and to identify outlyiM observations when ordinary residuals
would not identify these (Neter et al. 1996).

Section 2.2 — Bootstrap and Permutation Tests

Manly (1997) nicely captures the idea of bootstiagn the following, “The essence of
bootstrapping is the idea that, in the absencepbéher knowledge about a population, the
distribution of values found in a random samplesiaé n from the population is the best guide to
the distribution in the population. Therefore t@agpximate what would happen if the population
was resampled it is sensible to resample the sample

Sampling problems for IFIM which use PHABSIM inhetrén representing a reach of river with
a set of transects are considered using bootstraipdence intervals (Davidson and Hinkley
1997, Manly 2002, Rizzo 2008) of WUA based on rgdarg transects within habitat types by
Williams 1996. Williams (1996) samples with regganent from 5 transects each from pool,
riffle and glide habitats and computes percentieficlence intervals from the bootstrap replicate
samples. The bootstrap is used since sampleaieesnall and data is non-normal. The
replicates vary widely within habitat types and toafidence intervals are extremely wide. The
key problem is high variability in measured physicaiables within habitat types. Williams
recommends increased sample sizes, more attentsantple design and more intensive studies
on ecological relationships between Chinook andlatsitat. Williams states that besides
considering the number of transects to sample sraqmt confidence intervals of WUA should
account for measurement errors at the transectthandariation in the data used in developing
the suitability curves. Areas of the stream thaghthnot be sampled due to complex hydraulic
should also be taken into account. Location afgegts by professional judgment is not
recommended since there can be no measure of Midyiabresults. In a follow up paper,
Williams (2009) considers the following model eation/validation questions for 1-D models
using PHABSIM and IFIM: ‘how well do transects repent the study sites, how well do the
study sites represent the reach and how well db&BBIM estimate WUA at the transects?’
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Williams used the percentile bootstrap to estin®® confidence intervals for WUA curves in
Cache LaPoudre River 1-D rainbow trout habitatadility PHABSIM model. To calculate
confidence intervals for the set of curves boopsteplicate samples of the 107 curves were
drawn with replacement from the original curveghwgtratification by habitat type and
“bootstrap replicate” composite WUA curves werecaddted from the bootstrap samples. A
similar procedure was used for subsets of the surféne procedure was repeated 2000 times
and for each discharge the interval containingctirgral 1900 bootstrap replicate composite
curves was taken as the 95% confidence intervahtestimate of WUA at that discharge. The
author was careful to note that the percentile stomp is biased for some statistics or datasets
having extreme outliers (Davison and Hinkley 19%1i), for the data used the means and
medians of the bootstrap samples did not differmaathat an adjustment for bias was not
necessary. The transects used in this study wesea deliberately and are not random
selections. Williams admits this and makes theragsion that transect placement approximates
what would have occurred if the sample transeagutents were random. To simulate errors in
the WUA estimates, normally distributed random eteoms were generated. (Method not
given). The error terms had a mean of 0 and stdrikviation of 5 or 10% of the corresponding
WUA value, so that, WUA estimates were unbiased,aout two-thirds of the resulting WUA
values were within 5 or 10% of the assumed ‘triUes. The author acknowledges that the
modeled errors were ‘probably smaller than thersnmmactual PHABSIM studies. The effect of
changes in sample size (i.e. the number of WUA &slrwas investigated by: ‘(1) bootstrap
samples of reduced size were selected from thedulbf transects, with appropriate numbers of
curves from each habitat type, or (2) subsetsettirves were selected, with appropriate
numbers of curves from each habitat type, and baptsamples were drawn from the subsets.’
The first approach allows confidences intervalbegaomparable over the range of discharge
values while second approach which is more real&tch that means and confidence intervals
vary from subset to subset so that the results@rgared graphically at a single discharge.
Results Williams (2009) showed that the bootstragh @nventional confidence intervals were
nearly identical with the bootstrap intervals stlgthigher (possibly the result of the random
selection assumption). In the alternate case, wbetstrap sampling was stratified by habitat
category the bootstrap confidence intervals wereomeer than the conventional intervals.
Williams attributes this to the skewed distributimiWUA values in some habitats. In summary
Williams (2009) found that confidence intervalswand the composite WUA curves are
moderately wide (28% of the mean at the peak fejukienile curve, 18% for the adult curve),
and particularly if errors in the WUA curves arensilered, the shape of the composite curve
and the slope of the curve at a fixed dischargebeavery uncertain. The uncertainty or variance
increases as sample size decreases, and withuherusnber of transects used in PHABSIM
models, it was in general large, even if WUA attilamsects was estimated without error.
Williams recommends that bootstrap confidence watisrbe used to estimate the uncertainty in
HSC by similar methods as used for WUA. Williamsréis that his study does not simulate the

uncertainty arising in most PHABSIM studies fronogping transects within study sites, and
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extrapolating these results to a much longer readhat his analyses greatly underestimate the
statistical uncertainty inherent in most PHABSIMdies. William urges researchers to use
random sampling or random proportional samplingdiect transects as these will be
representative of the infinite population of a#lrisects and that researchers should determine
appropriate sample sizes to achieve desired ldvabdel precision before data collection.
Manly (2009) is given as a reference to a way toeae this using results from completed
PHABSIM studies.

Vaughn and Ormerod (2005) recommend the followimghod to evaluate model overfitting
using the bootstrap:

1. Estimate accuracy statistic in the training data

2. Generate a bootstrap of equal size to theitigaset by sampling training data with
replacement.

3. Fit the model in the bootstrap using the sami#noas as employed to fit it in the original
training data; this includes the same variablectiele strategy, where applicable

4. Estimate the accuracy statistic within the binagsresample. This simulates an accuracy
estimate made with the training data

5. Using the same model as in step 4, predictgkeiss distribution in the original training set
and estimate the accuracy

statistic. This simulates the use of independesttdata

6. Overfitting = (training data estimate in step4}est data estimate in step 5)

7. Repeat steps 2— 6 for 100-200 bootstraps. Aedtragvalues calculated in step 6 to provide
the overall estimate of overfitting

8. Subtract overfitting estimate from the trainghega estimate in step 1 to provide an optimism-

corrected value.

The non-parametric model-based bootstrap (DavisdHnkley 1997, Manly 1997, Efron and
Gong 1983, Efron 1982) may be used to obtain uebiastimates of Rmse standard errors

and confidence intervals of coefficients and predicintervals when there is confidence that the
model is specified correctly (constant error vaceamodel) (Efron1982, Davison and Hinkley
1997) . The bootstrap is also a good choice fgregsion evaluation when sample sizes are
small and it is difficult or impossible to deterraiwhether or not errors are normal (Davison and
Hinkley 1997, Manly 1997, Williams 2000). The bsioap generates random samples from the
empirical distribution of the sample. The modesd&resampling in linear regression algorithm
proceeds as follows (Davison and Hinkley 1997):

Forr=1,...n,
1 Forj=1,...n,
(a) setx; = X;

(b) randomly samplee} fromr, —-7r,...,r, - ; then
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() sety] =5, + fix + ;.
2 Fit least squares regression(b@, yl) ( X, yn) ,giving estimates
BB, S

wheres is the regressiomse

A different approach should be taken when errolan@es may not be constant and the data is a
sample from some multivariate distribution (X, Yhlere there is no assumption on the random
errors ¢; other than independence and we resample casesalgdréhm proceeds as follows

(Davison and Hinkley 1997):

Forr=1,... R
1 samplei,,...,i. randomly and with replacement fro{m,2,... ,n} ;

2 forj=1,...n setx =x.,y = ythen

3 fit least squares regression(txi, yl) ( X, yn) giving estimates
Y

Since regression may be used to predict new valuéischarge (not included in the available
data) for input to the final IFIM model a methochiseded for evaluating the precision of these
predictions. Bootstrap prediction errors can kedushen the above linear regression model
assumptions are suspect. Davison and Hinkley adwssg the following bootstrap procedure
for the constant error variance case wiknew observations are to be predicted:

Forr=1,...R
1 simulate responseg according to the model-based resampling algorithove;

2 obtain least squares estimafes (XT X)_1 X"y; then
3 Form=1,...M,
(@) sampled’m fromrp-T1,...,r,—7,and
(b) compute prediction errod, = X! 3, —(xf,@+£*+,m)
where the quantity to be predicted¥is= X 8+ &, and the point predictor ié?+ = xI/;" where the
prediction error is estimated by (b) above. +daties a new point to be predicted. A

(1— 2a) prediction interval fory, is estimated by the empirical quantiles of the pda¥ 's.
The bootstrap prediction limits are
Y. _az}RM+1)(1—a))’ Y. - O?(RMH)O/) where’y = I('é (1.21)
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Of course parametric asymptotic prediction intes\@n be computed in the usual manner when
regression assumptions are met (Neter et al. M86denhall and Sincich 2004). Most
software packages offer this option as a standsatlife of the regression function.

A permutation test (randomization test) is a typstatistical significance test in which a
reference distribution is obtained by calculatifigpassible values of the test statistic under
rearrangements of the labels on the observed datgésp From Manly (2009) a two sample test
of the difference in randomization test proceedfobews:

1. The observed absolute mean difference is labeled d

2. 2. Itis argued that if the null hypothesis is t(tlee two samples come from the same
distribution), then any one of the observed vakies,, . .., xsand y, v, . . ., ¥ could
equally well have occurred in either of the sampl@s this basis, a new sample 1 is
chosen by randomly selecting m out of the fullafet + m values, with the remaining

values providing the new sample 2. The absolutemagfferenced, :|7<—T4 is then
calculated from this randomized set of data.

3. Step 2 is repeated a large number of tinfes () to give a total dR differences ¢ o, . .
,Or.

4. TheRdifferences are put in order from the smalledatgest.

5. If the null hypothesis is true, then should look like a typical value from the setrof
differences, and is equally likely to appear anysghe the list. On the other hand, if the
two original samples come from distributions wiiffafent means, then,avill tend to
be near the top of the list. On this basisgsdsaid to be significantly large at the 0%
level if it is among the top 1@D % of values in the list. If 108 % is small (say 5% or
less), then this regarded as evidence againstuihbypothesis.

If the labels are exchangeable under the null hg®s$, then the resulting tests yield exact
significance levels (Davison and Hinkley 1997).Qlden et al. (2002) Empirical data is used to
introduce a randomization approach for assessireihveh the performances of the fish habitat
models are statistically greater than expectati@s®d on chance predictions. The test requires
creating a null distribution of correct classificat rates (CCRs) for a given species by randomly
permuting the original observations of occurreram@®ng the lake or stream sites, conducting
logistic regression analysis using the randomizeties occurrence and the original
independent variables, and calculating the jackkh@CR. The procedure was repeated 999
time and the significance level of the predictivedel was calculated as the proportion of
random CCRs (including the observed CCR) that \aergreat or greater than the observed
CCR.
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Permutation tests can be applied to a wide vadeproblems including testing for differences
between parameters from two or more distributigpayison and Hinkley (1997), Edgington

and Onghena (2007), Manly (2009)) and so it isssirg not to find it used more frequently in
fisheries habitat modeling studies. The randomiratest has an advantage over a nonparametric
test like the Mann-Whitney U-test because it alldiaes original data to be used rather than just
the ranks of the data (Manly 2009).

Section 2.3 — Rank Tests, Chi-squared, Tests Wsignfusion Matrix, ROC Curves

In a study comparing spawning habitat predictiocnBFdABSIM and River2D models, Gard
(2009), used the Mann Whitney U test to test fahaaer and in the case of the Sacramento
River for each race of Chinook salmon, if there wasgnificant difference in the composite
suitability index (CSI) predicted by PHABSIM for @apied versus unoccupied cells, and if there
was a significant difference in the CSI predictgdRiver2D for occupied versus unoccupied
locations. Kolmogorov-Smironov tests were conddiéte each site for each set of suitability
criteria to test if there was a significant diffece between the PHABSIM and River2D flow-
habitat relationships. Here the statistic beirsget@ is the median. Knapp and Preisler (1999)
conducted the non-parametric rank based Kruskab#is\bne-way analysis of variance to test
for differences in habitat characteristics assedatith cells used and not used by spawning
golden. The authors used the Kruskal-Wallis testlose the data was not normally distributed,
had unequal variances, and normality and variagoe/alency could not be accomplished using
standard transformations. The Mann-Whitney U4@stbeen applied in a number of model
evaluation settings when sample sizes are smalttendormality assumption has not been met
yet the data distribution is symmetric (Gard 20d8Hugh and Budy 2004). The Mann-
Whitney U-test was used by McHugh and Budy (2004dmpare the depth, velocity, and
gravel size (D84) values at sites that were useddawning during 2001 with those for sites that
were not used.

Spearman’s rharf) is a rank based non-parametric correlation coiefiit that assesses how well
an arbitrary monotonic function could describe riélationship between two variables , without
making any other assumptions about the particidture of the relationship between the
variables (Conover 1980). In Gallagher and Ga@®9) a variation of Spearman’s rho called
gamma that adjusts for data with many ties was eyepl to determine if there was a
relationship between Chinook salmon spawning dgmsitl predicted WUA at the mesohabitat
level in the Merced River.

Evaluation Indices Using a Confusion Matrix — Hireeal. 2006

Hirzel et al. (2006) review and compare indicesblasn presence/absence information include
Cohen’s Kappa, Kax AUC, and adjusted £in the context of evaluating generalized linear
models applied to habitat suitability data. Themghods index the degree of agreement between
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prediction and data. The first step is to chookalatat suitability (HS) threshold which is
intended to separate unsuitable areas where tloeesp® redd should be absent, from suitable
areas (HS greater than threshold) where it shoaijgrésent. Aonfusion matrixs created
which enumerates how many presence and abseneagwoalpoints occur in the suitable and
unsuitable areas, Figure 1. Other methods usisgrihtrix are described in Fielding and Bell
(1997). Among the evaluators based on this métrilke Cohen’s Kappa index K (Agresti,
1990) which is computed as follows:

ND % = %%
K= 1.22
N -2 X% (1.22)

Where x and N are counts of evaluation points &igetkin Fig. 1. K varies from -1 to 1, high
values indicating a good agreement between predietnd data, and O corresponds to random
agreement. The results obtained from this metleped on the threshold value that the user
chooses. Methods which do not depend on a thréshaludeK,.x and area under the curve
(AUC). Knaxis the highest Kappa for threshold values froma @.t AUC is found by plotting,
for threshold values from 0 to 1, the proportiorirak positive x/X; against the proportion of
false positives %/X,. One computes the area under the curve wherdJ&hd 0 indicates
worse-than-random model, 0.5 (random model) arlte&t(model possible).

Observed Margin
PresencéAbsenceisums
PredictedPresence X1, X1z X1,
Absence| X% X2z X2,
Margin sums X X2 N

Fig. 1 Contingency table of the model predictiagainst the actual observations. The x
represent counts of evaluation points, with Dxz (taken from Hirzel et al. 2006).

Boyce et al. (2002) found a way to relax somewhatthreshold constraint. Their method
consists in partitioning the habitat suitabilityge intob classes (or bins), instead of only two.
For each class it calculates two frequencies: @), the predicted frequency of evaluation
points:

P= B (1.23)




Where pi is the count of evaluation points predidig the model to fall in the habitat suitability
classi and z p, is the total number of evaluation points; E2)the expected frequency of

evaluation points, that is, the frequency expettaish a random distribution across the study
area. This is given by the relative area coveseddth class:

E = 4 (1.24)

b
hE:!

j=1

where a; is the number of grid cells belonging to habitat suitability class |, or area covered by the class |,
and Za,. is the overall number of cells in the whole studyaa For each class I, the predicted-to
expected (P/E) ratib; is given by

F=_1i (1.25)

If the habitat model adequately identifies the sgesuitable areas, a low suitability class should
contain fewer evaluation presences than expecteathéyce, resulting iR < 1. On the other
hand, high suitability classes should h&yecreasingly higher than 1. The plotR/fE against

the mean habitat suitability of each class provalegasily accessible interpretation tool. Thus a
good model should show a monotonically increasinye, i.e.F; increasing as suitability
increases. Boyce et al. (2002) rate this monotimiease by the Spearman rank correlation
coefficient betweelfr; andi. This index varies from -1 to 1. Positive valusdicate a model for
which predictions are consistent with the presedcgsibution in the evaluation dataset, values
close to zero indicate that the model is unlikelypé different from a random model, negative
values indicate an incorrect model, which predioig quality areas where presences are more
frequent. Hirzel et al. (2006) modified the “Boyloelex” by Precision of the Spearman rank
correlation could be achieved non-parametric camia# intervals through a randomization
procedure or bootstrapping (Efron and Gong 1983)IiM2009).

Section 3 —The Conceptual Model as a Basis fordésitbn and Evaluation
Section 3.1

An effective approach to model evaluation and \al@h should depend on the underlying
conceptual model.

Ahmadi-Nedushan et al. (2006) describe and comparéllowing habitat suitability modeling
estimation frameworks: multiple regression, logisggression, logistic regression, generalized
linear models, generalized additive models, aréifineural networks, fuzzy rule based modeling
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and principal components with respect to theimgjties and weaknesses. The authors report on
several comparative studies and indicate thai@aiineural networks show promise.

Castleberry et al. (1996) would require those usiRABSIM to construct model evaluation and
validation that considers the following issues) gdmpling and measurement problems
associated with representing a river reach witbcietl transects and with the hydraulic and
substrate data collected at the transects; (2) Isagrgnd measurement problems associated with
developing the suitability curves; and (3) problemih assigning biological meaning to

weighted usable area (WUA), the statistic estimate@HABSIM.

Kondolf et al. (2000) point out the potential praiis associated with errors related to different
spatial scales used in hydrodynamic and biologiuadel components. The conceptual model
for PHABSIM assumes that the data obtained frontrdn@sects represents half-way upstream or
downstream to the next transect. With this conegptodel, the authors point out, validation
consists of measuring the depth, velocity, andtsatesat random points in the study reach at
alternated discharges and comparing these measuiemith the values PHABSIM predicted

for those points, where validation should inclulde habitat variables as well as the WUA.
Kondolf et al. 2000 state that if the conceptuatleidor transect data are treated as samples
stratified by habitat types rather than as reptasgispecific areas of the channel, validation will
depend on the specifics of the sampling designtHmiprocess will remain the same: model
predictions of the joint distributions of depth)a@ty, and substrate would have to be compared
with independent data. If transect sites are ahosedomly, they will give an unbiased estimate
of conditions in the study reach, ‘so that models be validated at the transects and the
streamwise spatial sampling errors estimated seganasing statistical methods such as
bootstrapping’. Kondolf et al. 2000 urge researshe report estimates of WUA with standard
errors or confidence intervals so that all stakeééxs are aware of the uncertainty associated with
the estimates.

The choice of model tests should be made in theegbonf how the model will be applied
(Fielding and Bell 1997). The authors state th#te objective is to conserve habitats with high
opportunity costs the model should accurately ptespecies presence. If the model is to be
used to predict impacts for endangered species falsitives may be more critical. Fielding and
Bell put forth the following guidelines:

(1) Decide which data are to be used for the estimatiairor. Do not rely on an estimate
based on resubstitution of the training data. Aemwobust estimate will be obtained
from independent testing data.

(2) If predictions are to be restricted to a homogesegegion consider a data-partitioning
technique. If the predictions are to be testedHeir generality use a prospective sample
selected via temporal or geographical criteria.
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(3) If data-partitioning is to be used consider usingrerthan one approach, ideally including
k-fold partitioning or jack-knifing. When decidiran a size for the training set use a
heuristic such as that suggested by Huberty (2@6)also take into account any
cases:variables constraints imposed by classifier.

(4) Understand the nature of any error measures thatsad.

(5) If you wish to determine if a classifier predicetter than chance, use a measure such as
Kappa oNMI. Recall thalNMI is less affected by prevalence.

(6) ROC plots avoid the problems associated with ttolelséffects. If error is to be based
solely on confusion-matrix-derived measures comsadgusting the threshold. It is
desirable to usa priori criteria for deciding on a threshold.

(7) If classifiers are to be ranked, comparisons baseOC plots are likely to be more
robust since they are independent of the valuascionfusion matrix.

(8) If the aim is to improve within-region accuracy sater using spatial analysis methods
that incorporate the almost inevitable spatial eotelation.

(9) If the aim is to improve the predictive succeshwatospective samples, based on a
different region, an attempt should be made to rentbe spatial structure from the
models.

Additional suggestions by Fielding and Bell (198Wlude: if appropriate examine the spatial
pattern of the errors and consider using, withicayupost-hoc hypotheses to interpret the
patterns; consider weighting errors if there a@agical or economic justifications; be cautious
of any statement of model accuracy that does mifyithe choice of error measure; if after
model validation, the aim is to derive a robusssification rule, all of the available data should
be used.

Guisan and Thuiller (2005) discuss the importarfaaatching the resolution or spatial scale at
which sampling takes place and that of the resmiutihat predictions are to be made.

Evaluating the relevance of composite suitabilityexes as a probability of use measure is
considered in a test procedure described by Wilig2009b). For each model and site, order all
cells by CSI, and divide them into ranks by CSheit, plot the percentage of all cells in each
rank that are used over the mid-point of its rangeus, with ten ranks, the percentage of cells
with CSI that are greater than 0.9 that are useddvoe plotted over 0.95, the percentage of
cells with CSI > 0.8 and 0.9 that are used would be plotted over 0.85,@bnfidence intervals
for the plots could then be estimated by bootsirap(Effon 1982, Manly 1997, Davison and
Hinkley 199 ). If the CSl is a kind of resourcéestion function, then the plot should
approximate a straight line. This line shoulddrethe diagonal if the percentage of occupied
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cells is scaled by the constant of proportionddgyween the value returned by the function and
the probability that the cell will be used. Ifiead the CSl is an index of suitability rather than
of probability of use, then the percentage of usgts should increase sharply at higher CSI
values (Freeman and Moisen 2008), since fish sherliett the most suitable spawning habitat
available. If neither of these conditions obtathen either the hydraulic model has not
performed well, or the utility of the index shoudd questioned.

Section 4 — Analysis of Residuals and Model Dewgradi— Graphical and Numerical Methods
Section 4.1 — Histogram, Normal Probability Plots

Many of the journal articles reviewed performed saort of inspection of model residuals in
order to accomplish one or more of the followingtetmine model fit, identify outliers, check

for independence, normality and non-constant errBesterson et al. (2009) assessed goodness of
fit of the global (all predictors) model by exanmgiresidual and normal probability plots. They
also looked for potential temporal dependence bgenting plots of residuals ordered by sample
date for each sample site. If there was no traritle residuals, they assumed that there was no
temporal dependence. To check for goodness of figistic regression models and Poisson
regression models Peterson et al. (2009) examasdual and normal probability plots. Geist

et al. (2000) used refined nearest-neighbor aratysidigitized Chinook redds to determine
whether fall Chinook salmon redds were randomlyrithisted or if they followed a uniform or
clustered pattern. The spatial pattern analyssalso used to determine the distance between
redds within any given pattern type. ‘Refined ms&neighbor analysis (Boots and Getis 1988)
makes use of the cumulative distribution F(d) tareleterize the probability that the nearest
neighbor to a red is within a given distance divega a random spatial distribution generated by
a Poisson process, Geist et al. (2000) give theagd cumulative distribution function as

F(d)=1-&*"™, d>0 (1.26)

Where A is the intensity of the points within the areajraated byA =n/ Afor n points in the

area A. The empirical cumulative distribution @dtdnces was calculated from the data set for
each distance d and compared with the expectee ¥atuhat distance. They generated a Monte
Carlo confidence envelope around the expected Yalueach distance d. The empirical
cumulative distribution determined from the dataosmpared with the confidence interval for
each d: if the proportion of the nearest neighless than distance d is outside the confidence
envelope, then the hypothesis that the spatiatiatif the data points resulted from a random
process is rejected at the 95% confidence levbe direction of the deviation above or below
the confidence envelope indicates whether the mofoun pattern was closer to a clustered or
uniform distribution, respectively.

Section 4.2 — Run Charts
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Run charts plot residuals or prediction errors wglecation or time and are used to identify
places in the model where there is lack of fitamkl of independence (Vardeman and Jobe 1999).

Section 4.3 — Standardized Residuals, Predictioor Heitted vs Observed, Outliers, Fitted vs.
Independent Variables

Standardized regression errors should be plottathsigpredicted values and against the
independent variable to check for unequal errolavaes, outliers, lack of independence, bias
and model misspecification (Neter et al. 1996)asBn the predicted values may be indicated if
the residuals show a consistent pattern abovelowttbe zero line and unequal error variance
(dispersion) may show up as a fan shaped patteatreiresidual plot against the fitted values
(Mendenhall and Sincich 2004). A histogram obesrshould indicate that the distribution of
errors are approximately normally distributed. Bepres from normality in linear models can
also be checked by normal probability plots. Heaeh residual is plotted against its expected
value under normality. A plot that is nearly linégevidence for agreement with normality,
whereas a plot that departs significantly from diniy is evidence that the distribution is not
normal (Neter et al. 1996). Residuals from anyetgpmodel should also be plotted against
variables omitted from the model that might haveamant effects on the response. For
example, plotting residuals against a time variablcation variable can indicate if there is
spatial or temporal independence. Correlegramsabtle are useful plots for identifying lack
of special independence (Zuur et al 2009). ThebduWatson test for autocorrelation is a good
test for autocorrelated residuals where the nydlotiyesis that values of residuals are not
dependent of the magnitude of the residual at teeipus time step is to be tested (Mendenhall
and Sincich 2004). For a situation in which lineardels and generalized linear models are
suspected of requiring random effects terms, bdgce helpful. For example, when
observations within sites may be dependent, bots mibstandardized residuals grouped by sites
are useful (Pinheiro and Bates 2000, Zuur et @920 These boxplots should center around the
zero line if a random effects term for site is needed. The need for a random effects slope
term may be assessed by comparing plots of residuditted values from the random effects
for slope model with plots of residuals or fittealwes from the model without a random effects
term for slope when these plots are grouped by(Ziar et al. 2009). Alternatively, AIC and
likelihood ration tests can be used (Pinheiro aate8 2000).

Section 5 — Simulation — Monte Carlo, Sensitivityalysis and Fuzzification
Section 5.1 — Monte Carlo

To verify physical microhabitat accuracy and preciserror analysis and model validation
should be done on sample measurements of physigables taken over a wide variety of
streamflows (Bovee 1996). This data may be diffioutoo costly to obtain. Monte Carlo
simulation in which data is simulated using expégarameter values may be input to the model
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for model evaluation (Bovee 1996). Monte Carlo datian has the advantage that there is no
limit to the model hypotheses, sample sizes ana diatributions that can be used for model
testing.

For example sample size requirements to achieweea ¢gvel of accuracy and precision of
mode output for a prospective study might be deitegthby simulating data having variable
levels of error in each variance component assedtiaith each stage of model building and
fitting the model for several alternative sampleesiuntil the right combination of error and
sample size is found to match the researchersreztjlével of accuracy and precision. Worst
case and best case scenarios could be developed.

Section 5.2 - Sensitivity Analysis

Some variables such as temperature may requirge mamber of independent variables to
make model predictions of new temperatures atréiffelocations and times for the same and
new independent variable settings. Multiple regi@@s models used to make these predictions
can be assessed for adequacy using the model ggsodhfit, evaluation and validation
measures discussed above for discharge. In additi@rder to evaluate models during the
variable selection or calibration stage, Bovee @)3flvocates conducting a sensitivity analyses.
A sensitivity analysis is a test of a model in whibe value of a single variable or parameter is
altered, and the result of the change on the degrgndriable is observed. The process can be
carried out one variable at a time or in groupsig thought that interaction effects may be
important. In one method the investigator chartbesalue of each parameter or variable by a
fixed percentage during each trial (Fuller 1987y@&»1996). Sensitivity analysis provides
useful information on model adequacy to all stakééis in the modeling effort. The effects of
errors in each of the variables and parameterb®dépendent variable can be assessed. This
information permits the researcher to identify sres(insensitive) variables (those which have
a large (small) influence on the dependent varitdigperature) that must be reliably estimated
or for which larger errors can be allowed to oggtuller 1987, Bovee 1996).

Section 5.3 - Fuzzification

Fukuda (In Press) and Fukuda and Hiramatsu (2088]) a technique known as fuzzification in
evaluating alternatives among fish habitat prefeeenodels. The effectiveness of the
fuzzification in fish habitat modelling was assasbg comparing mean square error and
standard deviation of the models, and fluctuatiohabitat preference curves evaluated by each
model. As a result, the effect of fuzzification epped as smoother curves and was found to
reduce fluctuation in habitat preference curvegroportion to the level of fuzzification. The
smooth curves would be appropriate for expressimggudainty in habitat preference of the fish.
Fuzzification is the process of transforming disenealues into grades of membership for the
purpose of inclusion into a model training set.
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CONCLUSION

Fisheries habitat models serve three major purptsesedict species occurrences using
physical and biological variables, to increaseuhderstanding of species-habitat relationships
and to quantify habitat requirements. The useuaihgjtative statistical models to predict the
probable occurrence or distribution of species thaserelevant key variables is becoming an
increasingly important tool in conservation strgtagd fishery management.

This literature review has identified and summatigeme of the recent and past contributions to
evaluating and validating chinook habitat modelsnit in the literature as well as fisheries
habitat modeling journal articles for which the mabevaluation techniques used could be
considered applicable to chinook salmon habitateting. Attention has been given to defining
key algorithms and equations where these may napparent to the reader.

This survey has indicated that there exists a wadety of models and modeling frameworks
within which researcher have viewed the problerretlicting fish distribution and distribution
of fish spawning sites. Equally diverse are thé¢hods used to evaluate and validate these
models. Nonparametric methods have gained popularrecent years. Methods such as cross
validation and bootstrapping are appropriate feirttack of distributional assumptions though
traditional methods such as hypothesis testingrankl based tests are still commonly applied.

New estimation techniques such as artificial nenetvorks and fuzzy rule based modeling
show promise and have simulation based evaluahdrvalidation components.
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Table 2. Index for Chinook salmon habitat modelleation and validation literature.

Evaluation/Validation Section Objective Page
Method of Test
Correlation 1.1 Advantages, Disadvantages, p-values, C.l.'s. 2-6
Pearson CC 1.1 Linear Assoc. between 2 vars., Test multicollinearity, Eval. Input,vars.
R2 1.1 GOF, Model comparison, Prop. of variation explained.
Multiple R2 1.1 GOF, Model comparison, Prop. of variation explained, resub.
R2adj 1.1 GOF,Adjusted for resub. Bias, Model comparison, resub.
Multiple CC 1.1 Conditional CC. Between vars. When 1 or more accounted for.
r2 - Logistic Reg 1.1 GOF, Correlation coefficients for logistic reg., overall measure of fit.
P-values 1.2 Probability of more extreme test statistic under null, Critique of. 7,8
t-tests, ANOVA 1.3 Tests for 2 or more popln. means, Test diff. between phys. habitat vars. 8,9
'§ Paired t-tests 1.3 Evaluate diff. between model vars., data are paired time or space.
% t- tests of Reg Coeff 1.3 Determine sig. of regression coeffs. or diff. with fixed value.
& | Mean Squared Error 1.3 Measure residual unexplained error. Compare models.
F-tests 1.3 Compare nested models, Overall sig. of a linear model.
Likelihood Ratio 1.4 Model comparison using loglikelihood values, uses Chi-sq. test stat. 9
ANCOVA 1.4 Test reg. slopes when continuous and categ. vars. in model. 9
Confidence Intervals 1.4 Prob. intervals for popln. parameters where alpha is specified, test sig. 9
Prediction intervals 1.4 Prob. intervals to predict a new value of dependent var. 9
Cl's for Reg Coeff 1.4 Prob. Intervals for reg. coeffs., Test sig. of param., Eval. effect size. 9
AIC, AIC ¢ 1.5 Akaike information, Model selection, comparison, variable ranking. 9,10
AIC Confidence Set 1.5 Best subset of models among all in set; based on information theory. 9,10
Hosmer-Lemeshow 1.6 Logistic reg. GOF test based on predicted and obs.values, uses Chi-sq. 10-12
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Evaluation/Validation Section, Objective Page
Method Page of Test
New Data 2.1 Test model results on new set of data, less biased. 12-17
Resubstitution 2.1 Hold out some data from model fitting on which to test the model pred. 12-17
Jacknife - LOO CV 2.1 Leave-one-out CV, performance measure can be pred. errors. 12-17
K-fold CV 2.1 Test model predictability on K subsets of left out data. 12-17
Stratified K-fold CV 2.1 Same as K-fold but subsets all have same mean response. 12-17
Bootstrap SE 2.2 Empirical SE's calculated from replicate samples, (with repl. Resampling). 17-22
o |Bootstrap Cl's 2.2 Emp.percentiles of resampling statistic, (case sampling, or model based). 17-22
E Bootstrap P.I's 2.2 BS prediction intervals. Evaluate error in predicting new popln. value. 17-22
g Randomization 2.2 Exact tests; Almost any test can be subject of method to obtain p values. 17-22
ﬂé Mann Whitney 2.3 2 sample difference in medians; requires symmetric distributions use rank 22
2 Kolmogorov Smirnov 2.3 Used to test differences in two distributions. 22
Chi-squared 2.4 Test independence among counts grouped by categories. 24
Confusion Matrix 2.4 Error classification matrix; basis of error classification prediction tests. 24
Cohen's Kappa 2.4 Test rate of correct predictions. 24
Max Kappa 2.4 Test rate of correct predictions. 24
ROC Curves 2.4 Test rate of correct predictions. 24
Spearman CC 2.3 Test rate of correct predictions. 24
-§ Conceptual Basis 3.1 Develop strategy of evaluation/validation based on conceptual model 24-27
g Suitability Index 3.1 Test to determine if HIS is likely to be an index or probability. 24-27
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Evaluation/Validation Section, Objective Page
Method Page of Test
N Histogram 4.1 Normality of errors 27,28
Normal Probability Plot 4.1 Normality of errors 27,28
73 Run Charts 4.2 Test for temporal independence by looking for runs of pos or neg resids. 27,28
% Stand.Residual 4.3 Normalize residuals to express as standard deviation units. 27,28
e; Prediction Error 4.3 Measure of degree of accuracy of model predictions. 27,28
é Fitted vs Observed 4.3 Plots to inspect for places where the model fits or does not fit observed. 27,28
g Outlier plots 4.3 Plots to determine locations of outlying points. 27,28
Fitted vs. Covariates 4.3 Plots to determine model misspecification. 27,28
Monte Carlo 5.1 Examine model properties by testing with simulated data. 28, 29
Sensitivity Analysis 5.2 Shift parameter values to explore sensitivity of model output to changes. 28, 29
Fuzzification 5.3 Type of sensitivity analysis. 28, 29

Simulation
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Results From Initial Hydraulic Evaluation Of Cone Screens At
Tehama Colusa Canal Authority’s Interim Pumping Plant,
June 1 -12, 2009, Red Bluff, California

Team of evaluation participants:

Steve Thomas, P.E., National Marine Fisheries Service (NMFS)
Robert Hughes, P.E., California Department of Fish and Game (CDFG)
Mark Gard, Ph.D., U.S. Fish and Wildlife Service (USFWS)

Josh Gruber, USFWS

Background

The interim pumping plant was designed and built as a stop gap measure to divert water
from the Sacramento River to the Tehama Colusa (TC) Canal in response to an expected
mandate calling for delaying “gates in” operation of the Red Bluff Diversion Dam until
June 15 annually during the 2009 through 2011 period. Previously, the dam gates were
lowered on May 15 of each year to provide a gravity diversion of up to 2,500 cfs to the
TC Canal. A new diversion facility, including a new flat-plate fish screen to
accommodate water needs of the TC Canal water users without the need for lowering the
RBDD has been designed and construction will begin in mid-2010. The new facility will
allow normal flows to be supplied to the TC Canal via pumps making the diversion dam
obsolete and is expected to be operational in the spring of 2012. The interim project
intended to be used in concert with other facilities to provide water to the canal during
annual “gates out” operation of the Re Bluff Diversion Dam for three consecutive years
until the new long term pumping plant diversion facility is operational.

The interim pumping plant has ten vertical pumps each with a design capacity of 50 cfs.
(Figure 1) Pumps are paired to feed five, 36 inch conveyance pipes that lead to the
settling basin at the head of the TC Canal. Each pump is screened with a 14 ft diameter
conical fish screen manufactured by Intake Screens, Inc (IS1). Each screen has a total
surface area of approximately 180 square feet and has a rotating brush cleaning system
for debris removal that operates on a programmable timer. Conical screens were
developed to operate in tidal and back water areas where water depths are shallow and
there is no dominant current in the water body. They were chosen for this project based
on the shallow water conditions at the proposed site even though it was doubtful that
approach and sweeping velocity criteria could be met with this screen design®. A
condition of accepting the proposed design was that a hydraulic evaluation would be
carried out to determine whether or not the cone screens could be operated in
conformance with the State and federal fish screening criteria®.

! NMFS fish screen criteria document, Fish Screening Criteria for Anadromous Salmonids (1997) states,
“screen design must provide for uniform flow distribution over the surface of the screen, thereby
minimizing approach velocity.” The CDFG document, Fish Screening Criteria (June, 2000) states, “[t]he
design of the screen shall distribute the approach velocity uniformly across the face of the screen.”

2 Refer to conditions 6.4 and 6.7 of Incidental Take Permit No. 2081-2009-006-01 issued by the California
Department of Fish and Game.



Goal of Hydraulic Evaluation

Goals of fish screen hydraulic evaluations are typically 1) to measure near screen water
velocities under a near worst case scenario of diversion rate and river flows expected to
be encountered throughout the life of the facility; and 2) to adjust flow control baffles to
distribute flow uniformly over the entire screen surface. Give the atypical use of the cone
screen technology at the interim pumping plant, there was a third goal to this evaluation:
to determine whether or not the cone screens could be operated in conformance with the
State and federal fish screening criteria.

Methods

A SonTek 16 MHz Acoustic Doppler Velocimeter (ADV) was used to measure near-
screen velocities in three dimensions: X, Y, and Z. The ADV was positioned such that
approach velocity was measured directly by the X component of the probe. Sweeping
velocities were calculated as the resultant of Y and Z measured values. Raw data for
each location were stored in separate files and processed with WinADV, a program
developed by the U.S. Bureau of Reclamation. Point-average velocities were processed
with Microsoft Excel to produce charts and graphs.

Data were collected on four occasions over a two week period as shown in Table 1. A
shallow draft, aluminum boat owned and operated by USFWS was used to provide safe
access to the screens. The boat was tied up to structural piles typically within four feet of
the top of each screen unit. This distance was thought to provide sufficient buffer against
interference with screen velocities.

Table 1. Pumping plant and river data.

Date Pump _Recorded_ River Stage
Screen # Tested Pump HP Pair Paired Pumping at RBDD
Rate (cfs)
1 June 9 300 1&2 81.6 239.52
2 June 9 300 1&2 81.6 239.52
3 June 9 300 3&4 72.7 239.52
4 June 11 300 3&4 72.8 239.47
5 June 11 300 5&6 77.5 239.47
6 June 11 350 5&6 76.6 239.47
7 June 8 400 7&8 77.5 239.64
8 June 8 400 7&8 77.5 239.64
9 June 11 400 9&10 73.0 239.47
10 June 1 300 9&10 68.0 239.39

Screen area was divided into forty eight zones in an array of six depths and eight
positions (bearings) around each screen unit (Figure 3). Velocity measurements were
taken at or near the center of each zone. Positions for each measurement along each
bearing and screen area for each zone are shown in Figure 4. ISl manufactured a jig to



position the probe that attached to the screens’ cleaning systems (Figure 2, Photo 1). By
operating the cleaning system and adjusting the jig the ADV could measure near-screen
velocities three inches from the screen face at nearly any point on the screen. The probe
size prevented measuring velocities within the top two feet on each screen. (Photo 2)
Velocity measurements were recorded at a rate of 25Hz for a minimum of 60 seconds.

The original plan called for measuring velocities on all screens under two conditions: 1)
with both paired pumps running; and 2) with only one paired pump running. Because
two pumps fed each 36 inch conveyance line, the evaluation team theorized that each
pump’s capacity would vary depending on whether or not the paired pump was also
operating. Due to time constraints and Tehama Colusa Canal Authority’s water needs,
measurements were taken with both pumps operating for all screens except for Screen
#10. Initially, both Pumps 9 and 10 were operating, but only three points were measured
when Pump #9 was shut down for the remainder of that test.

Results and Analysis

Plots of approach velocity and sweeping velocity data are shown in Appendixes A and B,
respectively. Approach velocity data are also presented graphically overlaid on a plan
view of the pumping plant in Appendix C.

Approach velocities on Screens 6 — 10 did not exceed 0.45 fps, but only on Screen 8 were
approach velocities well distributed over screen all screen area. That said, overall
average approach velocities on Screens 7 and 8 were well below the value expected for
the measured diversion rate.

Approach velocity distribution on screen numbers 1 — 5 were heavily influenced by the
river current. Approach velocities in areas receiving direct impact of the current (i.e. the
upstream surface of the screens) far exceeded the design target value. Velocity data
indicate water will pass through the porous cones, entering the upstream side and exiting
the downstream side.

The steel plate on the upstream side of Screen #1 successfully reduced flow through what
would likely otherwise had been the hottest spot on all screens. Approach velocity
measurements at bearing 270 degrees were taken directly over the solid plate and ranged
from 0.30 to 0.48 fps, despite having a solid barrier three inches away. Approach
velocities to either side of the barrier plate at bearings 225 and 315 ranged from 0.07 to
0.62 and 1.37 to 1.90 fps, respectively.

Sweeping velocities varied over a wide range depending on location. On Screen 1,
sweeping velocities were 3 — 4 fps on the leading edge, 6 — nearly 14 fps on either side,
and approaching 0 fps on the downstream side. Sweeping velocity patterns were similar
on Screens 2 and 3, but to a lesser magnitude. All screens had at least one point where
sweeping velocity was essentially zero.



Conclusions

Screens located in the main river current (Screens 1 — 3) had hot spots exceeding 1.0 fps,
speeds that could present a serious hazard to juvenile salmonids and sturgeon, as well as
other fish. Screens 4 and 5 also had hot spots in patterns similar to those on Screens 1 — 3,
although to a lesser magnitude.

The overall average approach velocity on Screen #1 was less than zero, indicating more
water was exiting the screen than entering it. This clearly was not the case since the
pump was operating at the time of the evaluation. The negative average value was likely
the result of a too coarse mesh of measurement points for diversion rate calculations
purposes. Additional measurement points on screens with large ranges in approach
velocity values will improve diversion rate estimates.

The overall average approach velocity values for Screens 7 and 8 were lower than what
would have been expected given the measured pumping rate. These data imply the in line
flow meter was faulty or there were problems with measuring the approach velocities for
these screens. If the actual diversion rate was less than what was measured, approach
velocities will be greater and flow distribution may not be as uniform at the full diversion
rate than they were when measured during this evaluation.

Only on Screen 8 were approach velocities relatively uniform over all screen area.
Adjusting the flow control baffles on Screens 6 — 10 may be appropriate to increase the
uniformity of flow distribution over the entire screen surface of those screens.

Adjusting the existing baffles will not likely have much effect on water passing directly
through screen units 1 — 5. A completely different baffle system which
compartmentalizes screen sections, preventing flow from passing in one side and out the
other, would greatly improve approach velocity distribution on screens located in an
active current (i.e. Screens 1 - 5).

Sweeping velocity criteria were not always met, especially in the backwater area of
Screens 6 — 10. When sweeping velocities are very low screen hot spots accumulate
debris and present a greater hazard of impingement than a screen with greater sweeping
velocities. In areas where sweeping velocities are very low manual debris removal is
important to maintain satisfactory hydraulic conditions.

For most measurement locations, sweeping velocities exceeded approach velocities, in
many cases by an order of magnitude or more. At those locations, fish coming in contact
with the screen face will likely have sufficient velocity to be deflected off the screen and
continue with the prevailing current. In areas where sweeping velocity is low, a screen
with hot spots may lead to fish impingement (injury and/or mortality). Turbulence in
the vicinity of Screens 1 — 4 may disorient juvenile fish allowing predator species to lie in
wait in calmer waters for feeding opportunities.
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Figure 1. Layout of pumps and screens at the interim pumping plant. Screens and pumps were

numbered 1 through 10, left to right.
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Figure 2. Diagram of equipment used for measuring velocities on cone screens. The jig arm could be
raised or lowered to the appropriate elevation on the screen. The jig was attached to the rotating

brush system for positioning the velocity probe around the circumference of the screen
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Figure 3. Plan view of locations for velocity measurements on each cone screen: six positions along
each of eight bearing angles for a total of 48 measurement locations. The point naming convention

used included the bearing angle (with “0” being closest to the pump column), and distance from the
toe of the screen (0.5, 1, 2, 3, 4, 5) as shown in Figure 4.
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Figure 4. Partial section of a cone screen showing locations where water velocities were measured
(arrows, distance values in feet) and the screen zone area associated with those measurements
(square feet of screen area per zone). (Zones not shown to scale.)



Photo 1. Mounting the velocity probe and positioning jig to the screen’s cleaning
system.
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Photo 2. ADV probe in its highest position on the screen measured velocities two
feet below the top of the screen panel.



Appendix A

Approach Velocity Plots
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Appendix B

Sweeping Velocity Plots



Radar charts are typical X-Y charts warped

into a circle. In the lower left corner is a chart
displaying the same data in another format.

The charts have multiple Y axes

radiating from a common point, all with the same
scale as noted on the top axis. Plotted values
are water speed parallel to the screen face;
direction of flow is not indicated.
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have lower values.
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1.40

1.20

45 1.00 315

0.80

.60

040

90

135 225

180

270

Position on
screen up
from toe
(feet)

——0.5
-1
—A—2
3
——4
——5




Sweeping Velocity (fps), Screen #7

Position on




Sweeping Velocity (fps), Screen #8

c
(@)
c

8

=
)
o

o

\ \O-\O

from toe

o

(feet)

000000

L
20\




90

Sweeping Velocity (fps), Screen #9

135

180

225

270

Position on
screen up
from toe
(feet)

——0.5
-1
—A—2
3
——4
——5




Position on




Appendix C

Color Coded Approach Velocity Graphic

Approach velocity data are shown graphically overlaid on a plan view of the pumping
plant. Areas of approach velocity greater than 0.5 feet per second (fps) are colored red.
Areas with water exiting the screen, i.e. with negative approach velocities, are colored
blue. Areas with approach velocity values between 0.0 fps and 0.5 fps are colored green.
The design approach velocity criterion for this project was 0.33 fps.



Approach Velocities

Blue: Va < 0 fps

Green: 0 fps <Va < 0.5 fps
Red: Va > 0.5 fps
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Comparison of spawning habitat predictions of PHABSIM

and River2D models*

MARK GARD, U.S. Fish and Wildlife Service, 2800 Cottage Way, Room W-2605, Sacramento, CA 95825 USA.

E-mail: mark_gard@fws.gov

ABSTRACT

This study compared the predictions of two instream flow habitat models, the Physical Habitat Simulation System (PHABSIM) and River2D, with
regards to spawning habitat for chinook salmon, Oncorhynchus tschawytscha, and steelhead trout, Oncorhynchus mykiss. Spawning habitat was
simulated with both models for eight sites in the Sacramento River, five sites in the American River and one site in the Merced River, California, using
habitat suitability criteria developed from data collected on redds in each of these rivers. For four out of five cases, both models correctly predicted that
the combined suitability, calculated as the product of the depth, velocity and substrate suitabilities, of occupied locations was significantly greater than
the combined suitability of unoccupied locations. There was little difference in the flow-habitat relationships for each site and set of habitat suitability
criteria predicted by the two models. The use of River2D, rather than PHABSIM, is still warranted given its ability to model complex flow conditions

which cannot be simulated with PHABSIM.

Keywords: Instream Flow Incremental Methodology; IFIM; chinook salmon (Oncorhynchus tschawytscha); Physical Habitat

Simulation system; PHABSIM; Two-dimensional habitat modeling.

1 Introduction

By applying life stage specific habitat suitability criteria for
depth, velocity, substrate and cover, the Physical Habitat Sim-
ulation system (PHABSIM) predicts depth and velocity across
channel transects and combines these predictions with substrate
or cover data into a habitat index known as weighted useable
area (WUA) (Bovee, 1982; Milhous et al., 1989). The WUA
output is generally simulated for river reaches over a range of
stream flows. Alternatively, two-dimensional (2-D) hydraulic and
habitat models can be used to predict depth and velocity lat-
erally and longitudinally throughout a length of river channel
at a range of stream flows, and combine them with substrate
or cover to predict the WUA for the site. Two-dimensional
models have been suggested as a improvement and replace-
ment for PHABSIM (Ghanem et al., 1996; Leclerc et al.,
1995).

There are a number of potential advantages of using a 2-D
model, versus PHABSIM. The use of a 2-D model avoids prob-
lems of where to place transects within a mesohabitat unit
(Williams, 1996), since all of the mesohabitat unit is modeled
with a 2-D model. Two-dimensional models have the poten-
tial to model depths and velocities in complex channels over a
range of flows more accurately than PHABSIM because they
take into account local bed topography and roughness, and

explicitly use mechanistic processes (conservation of mass and
momentum), rather than the reduced Manning’s formulation and
an empirical velocity adjustment factor (Leclerc et al., 1995).
Two-dimensional models can explicitly handle complex habitats,
including transverse flows, across-channel variation in water sur-
face elevations, and flow contractions/expansions, which cannot
be modeled explicitly with PHABSIM (Ghanem ef al., 1996).
Two-dimensional models can perform better than PHABSIM at
representing patchy microhabitat features, such as gravel patches.
The data can be collected with a stratified sampling scheme,
with higher intensity sampling in areas with more complex or
more quickly varying microhabitat features, and lower intensity
sampling in areas with uniformly varying bed topography and
uniform substrate. Bed topography and substrate mapping data
can be collected at a very low flow, with the only data needed
at high flow being discharge and water surface elevations at the
top and bottom of the site and randomly sampled velocities for
validation purposes.

In this paper, we evaluate whether the two-dimensional
model used, River2D, (Steffler and Blackburn, 2001) is better
than PHABSIM at predicting chinook salmon (Oncorhynchus
tschawytscha) spawning habitat, and whether there are differ-
ences between PHABSIM and River2D in flow-habitat relation-
ships for chinook salmon and steelhead (Oncorhynchus mykiss)
spawning.

*This paper was prepared under the auspices of the U.S. Government and is therefore not subject to copywrite.

Received on March 22, 2007. Accepted on May 19, 2008.
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Figure 1 Location of the Sacramento, Merced and American Rivers,
California. Shaded areas are the study reaches used to compare the
spawning habitat predictions of the PHABSIM and River2D models.

2 Study sites

The Merced, American and Sacramento Rivers, located in the
Central Valley of California, have a mean annual flow of 18.7,
106 and 275.8 m?/s, respectively. This study was conducted in a
16-km reach of the Merced River, a 9-km reach of the American
River, and a 47-km reach of the Sacramento River (Figure 1).
PHABSIM and River2D were used to model one site on the
Merced River, five sites on the American River and eight sites on
the Sacramento River (Table 1). Three of the Sacramento River
sites, located upstream of the Anderson-Cottonwood Irrigation
District (ACID) Dam, were modeled for two conditions, with
boards in or out at the ACID Dam. Stage at the sites was as much
as 2m higher with the boards in at the ACID, versus with the
boards out.

3 Methods

3.1 Field measurements

To model spawning habitat in the study sites, depth, velocity
and substrate data were collected on 34 PHABSIM transects in
the Sacramento River, 27 PHABSIM transects in the American
River, and 6 PHABSIM transects in the Merced River, and sub-
strate and bed topography data were collected for 2-dimensional

Table 1 Characteristics of study sites. Three of the Sacramento River
sites were modeled for two conditions — with boards in and out at the
Anderson-Cottonwood Irrigation District (ACID) Dam. Stage at the
study sites was up to 2 m higher with the ACID Dam boards in, versus
with the boards out. The Merced site was simulated for 11 flows, one
of the American River sites (El Manto) was simulated for 35 flows,
and the Sacramento sites and the rest of the American River sites were
simulated for 30 flows. The lower end of the simulated flow range for
the El Manto site was 14.2 m?/s.

River Number of Number of Length of Range of

sites transects/ site (channel simulated

site widths) flows (m?/s)
Sacramento 8 1-10 0.33-1.88 92.0-877.8
American 5 2-7 2.43-10.43 28.3-311.5
Merced 1 6 2.03 5.7-19.8

hydraulic and habitat models for all 14 sites. For the PHABSIM
transects, lateral cell boundaries were established systematically
or where depth, velocity or substrate changed. Dominant sub-
strate was visually assessed as the 2.5 to 5.0 cm size range of
particles which comprised more than fifty percent of the sur-
face area. For example, if more than fifty percent of the area
was comprised of 5.0 to 10.0 cm particle sizes, the dominant
substrate was classified as 5.0 to 10.0 cm. The midpoint of the
dominant substrate size range would be an approximation of the
D50 particle size. The substrate size classes used are shown in
Figures 2 to 5. Depth, velocity and substrate data were collected
in October 1996 at a flow of 11.95m?/s for the Merced River
PHABSIM transects, in July to December 1998 at flows of 84.4
to 114.2m3/s for the American River PHABSIM transects, and
in June to September 1997 at flows of 216.0 to 427.5m?/s for
the Sacramento River PHABSIM transects. Water surface eleva-
tions and, for the Merced River, flows were measured at four to
six flows for each PHABSIM transect. These flows ranged from
2.21 to 29.6 m?/s for the Merced River during August to Octo-
ber 1996 (Gallagher and Gard, 1999), from 29.4 to 316.4 m3/s
for the American River during April to December 1998, and
from 128.6 to 1192.5m?/s for the Sacramento River during May
1997 to March 1999 (Gard and Ballard, 2003). Flows for the
American and Sacramento Rivers were determined from gage
readings.

The downstream-most and upstream-most PHABSIM tran-
sects were used for, respectively, the bottom and top of each
River2D site. The remaining PHABSIM transects were used to
establish a portion of the bed topography and substrate distribu-
tion of each River2D site. Data to develop the rest of the bed
topography and substrate distribution of the River2D sites were
collected with a total station for all of the Merced River site
and the dry and shallow portions of the American and Sacra-
mento River sites, generally in sets of points going across the
channel. Data for the bed topography and substrate distribution
of the deep (greater than 1 m depth) portions of the American
and Sacramento River sites were collected with an Acoustic
Doppler Current Profiler (ADCP) and underwater video (Gard
and Ballard, 2003). The average density of points from all
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sources (PHABSIM transects, ADCP and total station) used to
develop the bed topography for the River2D model was 2.65
points/100 m? (Table 2). The stage-discharge relationship for
the downstream-most PHABSIM transect and the flows at the
upstream boundary were used as inputs to the River2D model
of each site, while the water surface elevation measured at the
highest flow at the remaining PHABSIM transects were used
to calibrate the River2D model of each site by adjusting the bed
roughnesses of the site until the water surface elevations predicted
by River2D matched the measured water surface elevations.

To develop chinook salmon spawning habitat suitability crite-
ria, depth, velocity and substrate data were collected on fall-run
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chinook salmon redds in the Merced, American and Sacramento
Rivers and on late-fall-run and winter-run chinook salmon redds
in the Sacramento River (Table 3). The methods used to collect
habitat suitability criteria for the Merced and American Rivers
are given in Gard (1998), while the methods used to collect habi-
tat suitability criteria for the Sacramento River are given in Gard
and Ballard (2003). Horizontal surveying was used to determine
the location of redds in the Merced River site in 1996 and in
two of the American River sites on December 14—-17, 1998, and
a Global Positioning System (GPS) receiver was used to deter-
mine the location of redds in all of the Sacramento River sites
(occupied n values in Tables 4 and 5).
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3.2 Habitat modeling

Average water column velocities, water surface elevations,
riverbed elevations, cell substrate categories, and site discharges
were entered into PHABSIM to create hydraulic models for each
transect. PHABSIM hydraulic data were calibrated following
procedures in Milhous et al. (1989). These procedures involve the
development of stage-discharge relationships using three possible
techniques: a log-log linear rating curve, Manning’s equation, or

a step-backwater method. The calibrated files for each site were
used in PHABSIM to simulate hydraulic characteristics for the
range of flows in Table 1, and for the average flows each year
from the beginning of spawning through the end of redd data
collection (Table 6).

The River2D model solves the two-dimensional, depth aver-
aged St. Venant equations expressed in conservative form
(Steffler and Blackburn, 2002). The River2D model uses a finite
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element numerical method based on the Streamline Upwind
Petrov-Galerkin weighted residual formulation, using a New-
ton Raphson iterative method (Steffler and Blackburn, 2002).
The River2D model achieves turbulence closure through the use
of a Boussinesq type eddy viscosity formulation (Steffler and
Blackburn, 2002). The basis for the current form of RIVER2D is
given in Ghanem et al. (1995).

Bed topography, bed roughness and substrate distribution data
were entered into River2D to create hydraulic models for each
site. To minimize the effects of inflow boundary condition spec-
ifications, a one-channel-width upstream artificial extension was
added to each site by translating the cross-sectional topography
at the top of the site upstream parallel to the top PHABSIM tran-
sect, with a bedslope equal to the water surface elevation slope
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Figure 4 Sacramento River winter-run chinook salmon Habitat Suitability Criteria (HSC) curves.

at the top of the site. The River2D model distributes flow across
the inflow boundary proportional to depth, resulting in the fastest
velocity being at the thalweg. The River2D model used a trian-
gular irregular network (TIN) grid, with grid elements ranging
in size from 13 m in areas with uniform topography to 0.7 m in
areas with rapidly varying topography (Figure 6). The grid ele-
ment sizes were selected to minimize the elevation error between
the TIN and the underlying bed topography data, while taking
into account computational limitations of large numbers of grid
elements. The number of grid elements, from site to site, ranged

from 5,475 to 24,488. River2D hydraulic data were calibrated
by adjusting bed roughnesses until simulated water surface ele-
vations matched measured water surface elevations. The initial
values of bed roughness for the River2D model were set equal
to five times the midpoint of the substrate range, i.e. a substrate
range of 5 to 10 cm would have an initial bed roughness of 0.4 m
(7.5 cm x 5). Five times the average particle size is approximately
the same as 2 to 3 times the d85 particle size, which is recom-
mended as an estimate of bed roughness height (Yalin 1977). The
bed roughnesses were adjusted by applying a fixed multiplier
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Figure 5 Steelhead Habitat Suitability Criteria (HSC) curves used to simulate steelhead spawning habitat in the Sacramento and Lower American

Rivers.

to all of the bed roughnesses. The values of all other River2D
hydraulic parameters were left at their default values (upwind-
ing coefficient=0.5, minimum groundwater depth=0.1m,
groundwater transmissivity =0.1 m?/s, groundwater storativ-
ity=1, and eddy viscosity parameters epsilonl=0.01m?/s,
epsilon2 =0.5m?/s and epsilon3 =0.1 m?/s). The upwinding
coefficient is used in River2D’s Petrov-Galerkin finite element
scheme, the groundwater parameters are used for River2D’s wet-
ting/drying algorithm, and the eddy viscosity parameters are used

in River2D’s transverse shear model (Steffler and Blackburn,
2002). The calibrated files for each site were used in River2D
to simulate hydraulic characteristics for the range of flows in
Table 1, and for the average flows each year from the beginning
of spawning through to the end of redd data collection (Table 6).

Habitat suitability curves (HSC) are used in PHABSIM and
River2D to translate hydraulic and structural elements of rivers
into indices of habitat quality called combined suitability indices
(CSI), calculated as the product of the depth, velocity and
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Table 2 Study site data collection. There is only one value for the

range of point densities for the Merced River since there was only one

study site on that river.

River Range of point Number of points
densities (points/100 m?) per reach

Sacramento 0.90-4.16 4717

American 1.03-1.24 4784

Merced 3.41 367

substrate suitabilities. The habitat suitability criteria data for the
Merced and Lower American Rivers in Table 3 were used to
develop HSC for fall-run chinook salmon in the Merced and
Lower American Rivers (Gard, 1998). The habitat suitability
criteria data in Table 3 for the Sacramento River were used
to develop HSC for fall-run, late-fall-run and winter-run chi-
nook salmon in the Sacramento River (Figures 2 to 4) using
the techniques in Gard (1998). Habitat suitability criteria for
steelhead (Figure 5) were developed from depth and velocity
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Table 3 Habitat suitability criteria data collected as part of this study.
Flows are the range of flows during data collection. Spawning criteria for
late-fall chinook salmon were developed using the data from this study
and data collected on 79 redds by the California Department of Fish

and Game on Jan 1-Mar 3 1986—1988 at flows of 89.2 to 162.8 m’/s.

River Race Number Data collection Flow (m?/s)
of Redds dates

Sacramento Fall-run 437 Oct 23-Nov 25 130.4-176.8
1995-1999

Sacramento Late-fall-run 77 Feb 27-Mar 29 90.2-117.0
2001

Sacramento Winter-run =~ 227 May 26-Jul 15 297.2-563.8
1996-2001

American Fall-run 218 Nov 6-7 1996  78.6

Merced Fall-run 186 Nov 12-14 7.79
1996
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data collected on steelhead redds in the Lower American River
by the California Department of Fish and Game and substrate
data collected on steelhead redds in the Trinity River by the
U.S. Fish and Wildlife Service using the methods in Gard
(1998).

The calibrated PHABSIM and River2D hydraulic simulations
were used with the above HSC to generate flow-habitat relation-
ships for fall-run chinook salmon spawning in the Sacramento,
American and Merced River sites, for steelhead spawning in the
Sacramento and American River sites, and for late-fall-run and
winter-run chinook salmon spawning in the Sacramento River
sites. The calibrated PHABSIM hydraulic simulations for the
flows in Table 6 were used with the chinook salmon HSC to cal-
culate the CSI values predicted by PHABSIM for occupied (cells
with redds) and unoccupied cells for each site and year where redd
locations were determined. For unoccupied cells, all wetted cells

Table 4 Results of Mann-Whitney U Tests for PHABSIM occupied versus unoccupied cells.

River Race Occupiedn  Unoccupiedn  Occupied median ~ Unoccupied median ~ p-value
Merced Fall 28 221 0.10 0.00 0.011
American Fall 103 497 0.23 0.01 0.003
Sacramento  Fall 71 3081 0.31 0.01 < 0.000001
Sacramento  Late-fall 22 1906 0.26 0.17 0.16
Sacramento ~ Winter 51 6164 0.29 0.00 < 0.000001
Table 5 Results of Mann-Whitney U Tests for 2-D model occupied versus unoccupied locations.
River Race Occupiedn  Unoccupiedn  Occupied median ~ Unoccupied median ~ p-value
Merced Fall 33 220 0.54 0.27 0.001
American Fall 184 458 0.04 0.00 0.000003
Sacramento Fall 74 3080 0.11 0.03 0.000026
Sacramento Late-fall 16 1906 0.07 0.14 0.313
Sacramento ~ Winter 58 6164 0.14 0.01 0.000062

Table 6 Time period and average chinook salmon spawning river discharge (m?/s) for the Merced, Lower American
and Sacramento Rivers. Data are only given for years in which redd locations were recorded for study sites. The range
of flows for the Sacramento River sites reflects the different flows present at different sites due to tributary inflow
within the reach and differences from site to site in the final date of redd data collection.

Race 1996 1997 1998 1999 2000 2001

Merced Fall

Time period 10/23-11/14

Average 8.4
American Fall

Time period 11/11-12/17

Average 87.4
Sacramento Fall

Time period 10/9-11/20 10/7-11/4

Average 127.9-130.3 173.3-177.8
Sacramento Late-

Time period fall 1/6-3/29

Average 108.1-117.0
Sacramento Winter

Time period 5/15-6/23 4/15-7/14 4/15-7/10 4/15-6/21

Average 445.4-469.4 288.6-308.5 308.1-324.0 281.2
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Figure 6 Example of triangular irregular element mesh used to perform the two-dimensional hydraulic modeling of the American River.

were used. Similarly, the calibrated River2D simulations for the
flows in Table 6 were used with the same chinook salmon HSC to
calculate the CSI values predicted by River2D for occupied and
unoccupied locations for each site and year where redd locations
were determined. Unoccupied locations were randomly selected
which met the following criteria: they were farther than one m
from an occupied location, and they were wetted. The number of
unoccupied River2D locations (Table 5) was chosen to be simi-
lar to the number of unoccupied PHABSIM cells (Table 4). The
number of occupied River2D locations (Table 5) differs from the
number of occupied PHABSIM cells (Table 4) for the following
reasons: 1) some PHABSIM cells contained more than one redd,
while each occupied River2D location only contained one redd;
2) some portions of the River2D sites were not represented by
any of the PHABSIM transects; and 3) redds located upstream of
the uppermost PHABSIM transect, but within the portion of the
channel represented by the uppermost PHABSIM transect, would
be located within PHABSIM cells but would be upstream of the
River2D site. Model type (River2D versus PHABSIM) came into
the analysis of CSI because the analysis used the CSI calculated
by the two models based on the depths, velocities and substrates
predicted by each model at the redd locations, rather than the CSI
that could be calculated from the measured depths, velocities and
substrates. The River2D model calculates CSI using the depths
and velocities from the hydraulic simulation, substrate data from
a channel index file, and the HSC. The key differences between
the models tested in this paper are that PHABSIM is a one-
dimensional model that simulates velocities using Manning’s n
values, while River2D is a two-dimensional model that simulates
velocities using conservation of mass and momentum. During the
habitat calculations, substrate is assigned to each River2D node
based on the nearest substrate datapoint in the channel index file
(either longitudinally or laterally), while PHABSIM, with longi-
tudinal cells, assigns substrate values based on the nearest vertical
longitudinally.

3.3 Data analysis

Mann-Whitney U tests (Wilkinson, 1990) were used to deter-
mine for each river, and, in the case of the Sacramento River,

for each race of chinook salmon, if there was a significant dif-
ference in the CSI predicted by PHABSIM for occupied versus
unoccupied cells, and if there was a significant difference in the
CSI predicted by River2D for occupied versus unoccupied loca-
tions. This test is analagous to the transferability test described
by Thomas and Bovee (1993). Kolmogorov-Smirnov tests (Steel
and Torrie, 1980) were performed for each site for each set of
suitability criteria to detemine if there was a significant difference
between the PHABSIM and River2D flow-habitat relationships.
Separate Kolmogorov-Smirnov tests were performed for the three
Sacramento River sites upstream of the ACID dam for the two
conditions simulated (boards in or out at the ACID Dam). As
a result, there were a total of 55 Kolmogorov-Smirnov tests
([3 Sacramento River sites above ACID Dam x 2 conditions + 5
Sacramento River sites below ACID Dam] x 4 HSC sets + 5
American River sites x 2 HSC sets + 1 Merced River site x 1
HSC set).

4 Results

Velocity validation statistics of the River2D hydraulic model are
given in Table 7, while a graphical example of the validation
results are shown in Figure 7. Typical results of the River2D habi-
tat model are shown in Figure 8. The CSI of occupied locations
predicted by both PHABSIM (Table 4) and River2D (Table 5)
was significantly greater than the CSI of unoccupied locations at
p = 0.05 (Mann-Whitney U test) for fall-run chinook salmon
spawning for all three rivers and for winter-run chinook salmon
spawning in the Sacramento River. However, the CSI of occu-
pied locations predicted by both PHABSIM and River2D were
not significantly different from the CSI of unoccupied locations at
p = 0.05 (Mann-Whitney U test) for late-fall-run chinook salmon
spawning in the Sacramento River. The number of occupied cells
and locations for late-fall-run (Tables 4 and 5) was lower than
for the other Mann-Whitney U tests. The median CSI predicted
for redd locations by River2D was greater than that predicted by
PHABSIM for the Merced River, but was less for the American
and Sacramento Rivers (Tables 4 and 5). The percentage of occu-
pied locations where River2D predicted a CSI of O was less than



Comparison of spawning habitat predictions of PHABSIM and River2D models 65

Table 7 River2D hydraulic modeling validation results. The errors
were calculated as the absolute value of the difference between the
measured and simulated velocities.

River Site Mean error Mean error
number (m/s) for velocities (%) for velocities
< 0.91 m/s > 0.91 m/s
Sacramento 1 0.31 24%
Sacramento 2 0.17 17%
Sacramento 3 0.14 16%
Sacramento 4 0.52 30%
Sacramento 5 0.29 15%
Sacramento 6 0.22 13%
Sacramento 7 0.48 13%
Sacramento 8 0.34 20%
American 1 0.63 38%
American 2 0.25 27%
American 3 0.27 17%
American 4 0.35 24%
American 5 0.31 22%
Merced 1 0.17 26%

the percentage of occupied cells where PHABSIM predicted a
CSI of 0 for fall-run chinook salmon spawning in all three rivers,
but was greater for late-fall-run and winter-run chinook salmon
spawning (Tables 7 and 8). For both PHABSIM and River2D, a
substrate which was too large or small was the cause of most of
the occupied locations which were predicted to have a CSI of 0
(Tables 7 and 8).

The Kolomogorov-Smirnov D statistics for the comparisons
of PHABSIM and River2D flowhabitat relationships (Figure 9)
ranged from 0.007 (Figure 10C) to 0.41 (Figure 10A), with
a median value of 0.07 (Figure 10B). Only one PHABSIM
flow-habitat relationship (Figure 10A) was significantly differ-
ent from the River2D flow habitat relationship at p = 0.05. Even
though the differences between the PHABSIM and River2D flow
habitat relationships were almost allways not statistically sig-
nificantly different, differences in the flow habitat relationships
between the two model could result in different flow manage-
ment decisions. For example, a comparison with a relatively low
Kolomogorov-Smirnov D statistic of 0.03 (Figure 10D) has a
maximum amount of spawning habitat at 85.0 m*/s for PHAB-
SIM, versus at 118.9m3/s with River2D, a 40 percent higher
flow.

5 Discussion

Errors in the habitat predictions for occupied locations for PHAB-
SIM can be due to longitudinal variation in depth, velocity and
substrate (Gallagher and Gard, 1999) or due to the velocity dis-
tribution across the channel changing with flow. Errors in the
habitat predictions for occupied locations for River2D can be
due to inadequate detail in mapping substrate distribution, insuf-
ficient data collected to correctly map the bed topography of the
site, or effects of the bed topography upstream of the study site
not being included in the model. For the Sacramento River sites,
a substantial proportion of the error for both the PHABSIM and
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Figure 7 Example of River2D validation for one of the transects of the American River site illustrated in Figure 6 at a flow of 88.2 m?/s.
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Figure 8 Example of River2D output of CSI for fall-run chinook salmon spawning at a flow of 87.8 m?/s for the American River site illustrated in

Figure 6.

Table 8 Characteristics of occupied cells predicted by PHABSIM. The numbers in the last five columns are the number of
occupied cells that PHABSIM predicted having a CSI of 0 as a result of the cause given for that column. The percent of

occupied cells with a CSI of 0 is the total number of occupied cells with a CSI of 0 (incuding all of the causes in the last five

columns) divided by the total number of occupied cells (as given in Table 4).

River Race % Occupied cells Substrate too Dry Too Too Too
with CSI of O large or small shallow slow fast
Merced Fall 4% 1 0 0 0 0
American Fall 36% 24 7 1 0 5
Sacramento Fall 28% 16 4 0 0 0
Sacramento Late-Fall 18% 3 1 0 0 0
Sacramento Winter 22% 11 0 0 0 0

River2D models habitat predictions can be attributed to errors in
the GPS measurements of redd locations, rather than errors in
the habitat predictions of the models. The location of redds indi-
cated by the GPS measurement can be as much as 5 m from the
actual redd location (Gard and Ballard, 2003). In several cases,
the redd location indicated by the GPS measurement was up onto
the riverbank above water’s edge.

The ability of PHABSIM in this case to relatively accurately
predict the CSI of redd locations can be attributed to the num-
ber and spacing of transects, such that conditions at the transect
tended to be representative of the depths, velocities and substrates
present throughout the cells, and because flow at the sites chosen
is largely one-dimensional, with only limited two-dimensional
effects, such as transverse flows and across-channel variation
in water surface elevations. There is a balance in the predictive
accuracy of PHABSIM and River2D between the shapes of cells
and the velocity information provided to each model. River2D
will tend to be more accurate than PHABSIM because of the
smaller triangular elements used by River2D, compared to the
large rectagular cells used by PHABSIM. At least at flows close

to those at which velocity data were collected and at locations
close to the transect, PHABSIM will typically do a good job in
predicting velocities, since it calculates the Manning’s n value
for each cell from the measured depth and velocity, and then
calculates the simulated velocity from the Manning’s n value.
In contrast, River2D does not use any measured velocity data
to predict velocities. While the only way to improve the perfor-
mance of the PHABSIM habitat predictions would have been
to increase the number of transects, and thus decrease the lon-
gitudinal length of the cells, there are several techniques that
could have been used to improve the performance of the River2D
habitat predictions with the existing dataset. It appears based on
our substrate data that substrate varies more laterally than lon-
gitudinally. To test whether this supposition could be used to
improve the performance of River2D, a test channel index file
was created for the American River site in Figures 6 and 8 in
which longitudinal breaklines were added to force River2D to
predict substrate at a given location based on the nearest longi-
tudinal point where substrate data was collected. This decreased
the number of redds with predicted substrate suitability of zero
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Table 9 Characteristics of occupied locations predicted by River2D. The numbers in the last five columns
are the number of occupied locations that River2D predicted having a CSI of 0 as a result of the cause
given for that column. The percent of occupied locations with a CSI of 0 is the total number of occupied

locations with a CSI of 0 (incuding all of the causes in the last five columns) divided by the total number

of occupied locations (as given in Table 5).

River Race % Occupied cells Substrate too Dry  Too Too Too
with CSI of 0 large or small shallow slow fast
Merced Fall 0% 0 0 0 0 0
American Fall 33% 52 5 0 1 3
Sacramento Fall 22% 13 1 1 0 1
Sacramento Late-fall 37% 6 0 0 0 0
Sacramento ~ Winter 34% 13 0 4 3 0
12
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Figure 9

from 22 with the original channel index file (Figure 11A) to 13
with the test channel index file (Figure 11B). The distribution of
flow across the inflow boundary can have a substantial effect on
the velocities predicted by River2D, at least in the upper portions
of the sites. Accordingly, the performance of River2D could be
improved by having a bed topography at the inflow boundary
that is proportional to the measured distribution of velocities at
the top of the site, so that the thalweg at the inflow boundary
would be directly upstream of the highest velocity at the top of
the site. The performance of the River2D model could also have
been improved by collecting two additional types of data: the
bed topography in one channel-width upstream of the top of the
site, and mapping polygons of the substrate distribution. The
velocity simulation within the site would have been improved by
incorporating the actual bed topography upstream of the site into
the computational mesh, instead of using an artificial upstream

Results of Kolmogorov-Smirnov tests of PHABSIM versus River2D flow-habitat relationships. One of 55 tests was significant at p = 0.05.

extension, as was done in this study. Since the substrate at a
given point is assigned based on the closest point where substrate
data was collected, River2D assumes that the substrate changes
half-way in between two sets of cross-sectional points. Mapping
substrate polygons would more accurately define where changes
in substrate occur, and thus improve the performance of River2D
with respect to substrate distribution.

The purpose of this study was to compare the habitat predic-
tions of PHABSIM and River2D, rather than to validate either
the HSC curves or the hydraulic modeling of PHABSIM and
River2D. The performance of PHABSIM and River2D in pre-
dicting the CSI of occupied locations should be viewed as a
combination of errors due to the predictive accuracy of the HSC
curves used and the accuracy of PHABSIM and River2D to pre-
dict the depth, velocity and substrate spatial distribution within
the sites. The combined errors were tested against fish data (redd
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Figure 10 Sample PHABSIM and River2D flow-habitat relationships. A. Lower Lake Redding (Sacramento River) site, ACID boards out, steelhead
spawning. Flow-habitat relationship with highest Kolmorogorov-Smirnov D statistic, p < 0.05. B. El Manto (American River) site, fall-run chinook
salmon spawning. Flow-habitat relationship with median Kolmorogorov-Smirnov D statistic, p > 0.05. C. Upper Lake Redding (Sacramento River)

site, ACID boards out, late-fall-run chinook salmon spawning. Flow-habitat relationship with lowest Kolmorogorov-Smirnov D statistic, p > 0.05.

D. Sailor Bar (American River) site, fall-run Chinook salmon spawning.

locations) across systems and flow levels. Since the same HSC
were used for PHABSIM and River2D, differences between the
two models in predicting the CSI of occupied locations is entirely
due to the ability of the two models to predict depths, velocities
and substrates, which are translated into CSI by the HSC. Within
the usual use of calibration, the only data used to calibrate the two
models were water surface elevations. The data used to develop
the HSC (Table 3) could also be viewed as calibration data. Since
the redd location data used to compare the habitat predictions of
PHABSIM and River2D for the Sacramento and Merced Rivers

were a subset of the data used to develop the HSC for these rivers,
these data can not properly be considered validation data. In con-
trast, the redd location data for the American River were not used
to develop the American River HSC, and thus the results of the
comparisons of the CSI predictions of PHABSIM and River2D
can be viewed as a validation of the combination of the Amer-
ican River HSC and the hydraulic modeling of PHABSIM and
River2D. The results for each model help to validate the hydraulic
modeling of the other, while the combined results of the two
models help to validate the HSC.
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Figure 10 (Continued)

There were several limitations of the tests used in this study.
The low number of occupied late-fall spawning locations (22 and
16 for, respectively PHABSIM and River2D) resulted in a low
power of the Mann-Whitney U test for this race. In this regard,
Thomas and Bovee (1993) found in the analagous transferabil-
ity test that the power of the test was significantly reduced if
the number of occupied locations was less than 45. Guay et al.
(2000) found a significant positive relationship between fish den-
sities and habitat quality indices, similar to our results that the
CSI predicted by River2D of occupied locations was greater
than for unoccupied locations for the remaining tests. The main
limitation of the comparison of the PHABSIM and River2D flow-
habitat relationships was that we were not able to compare the
flow-habitat relationships of PHABSIM and River2D for areas

which could not be modeled with PHABSIM. Similar to the
results of this study, Waddle ef al., (2000) found mixed results in
PHABSIM and River2D’s abilities to predict velocities.

This study had mixed results on whether River2D is better
than PHABSIM at predicting spawning habitat, and found lit-
tle difference between PHABSIM and River2D in flow-habitat
relationships. However, with the refinements suggested above,
River2D has the potential to significantly outperform PHABSIM
at predicting spawning habitat. Probably the main advantage of
River2D is its ability to model conditions, such as transverse
flow, across-channel variations in water surface elevation, and
flow contractions/expansions, which cannot be modeled with
PHABSIM. If flow-habitat relationships for areas that cannot be
modeled with PHABSIM are significantly different from areas,
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Figure 11 Distribution of substrate predicted by River2D for the American River site in Figures 6 and 8. A. Distribution of substrate using the original

channel index file. B. Distribution of substrate using the test channel index file where substrate was determined based on the closest longitudinal
substrate datapoint.
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